Câu hỏi:

03/10/2025 20 Lưu

Dạng 2. Trắc nghiệm đúng sai

Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Trong không gian, cho tứ diện ABCD có trọng tâm \[G\].

a) \[\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \].

b) \[\overrightarrow {OG}  = \frac{1}{4}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD} } \right)\].

c) \[\overrightarrow {BG}  = \overrightarrow {GA}  + \overrightarrow {GC}  + \overrightarrow {GD} \].

d) \[\overrightarrow {AG}  = \frac{2}{3}\left( {\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} } \right)\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Theo công thức vì \[G\] là trọng tâm tứ diện \[ABCD \Rightarrow \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \].

b) Đúng. Ta có:

\[\overrightarrow {OG}  = \frac{1}{4}\left( {\overrightarrow {OG}  + \overrightarrow {OG}  + \overrightarrow {OG}  + \overrightarrow {OG} } \right) = \frac{1}{4}\left( {\overrightarrow {OA}  + \overrightarrow {AG}  + \overrightarrow {OB}  + \overrightarrow {BG}  + \overrightarrow {OC}  + \overrightarrow {CG}  + \overrightarrow {OD}  + \overrightarrow {DG} } \right)\]\[ = \frac{1}{4}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD} } \right)\].

c) Đúng. \[\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0  \Leftrightarrow \overrightarrow {GA}  + \overrightarrow {GC}  + \overrightarrow {GD}  =  - \overrightarrow {GB}  = \overrightarrow {BG} \].

d) Sai. \[\overrightarrow {AG}  = \overrightarrow {AO}  + \overrightarrow {OG}  = \overrightarrow {AO}  + \frac{1}{4}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD} } \right) = \overrightarrow {AO}  + \frac{1}{4}\left( {4\overrightarrow {OA}  + \overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} } \right)\]

\[ = \overrightarrow {AO}  + \overrightarrow {OA}  + \frac{1}{4}\left( {\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} } \right) = \frac{1}{4}\left( {\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} } \right)\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một chiếc máy đo đạc trắc địa được đặt trên một giá đỡ ba chân. Trọng lực tác dụng lên chiếc máy có độ lớn là \(30{\rm{N}}\) và được phân bố thành ba lực \(\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_2} (ảnh 2)

Gán các lực \[\overrightarrow {{F_1}}  = \overrightarrow {SA} ,\,\,\overrightarrow {{F_2}}  = \overrightarrow {SB} ,\,\,\overrightarrow {{F_3}}  = \overrightarrow {SC} .\]

Vì \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right|\) và góc tạo bởi mỗi chân của giá đỡ với mặt đất bằng \(60^\circ \) nên \(S.ABC\) là hình chóp đều.

Gọi \(M\) là trung điểm \(BC,\,\,G\) là trọng tâm \(\Delta ABC \Rightarrow SG \bot \left( {ABC} \right).\)

Ta có \(\widehat {SBG} = 60^\circ  \Rightarrow SG = SA.\sin 60^\circ  = \frac{{SA\sqrt 3 }}{2} \Rightarrow SA = \frac{{2SG}}{{\sqrt 3 }}.\)

Đặt \(\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  \Rightarrow \left| {\overrightarrow F } \right| = 30\left( {\rm{N}} \right).\)

Vì \(\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  = \overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  = 3\overrightarrow {SG}  \Rightarrow \left| {\overrightarrow F } \right| = 3\left| {\overrightarrow {SG} } \right| \Rightarrow SG = \frac{{\left| {\overrightarrow F } \right|}}{3} = 10.\)

Vậy \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {SA} } \right| = 2\frac{{SG}}{{\sqrt 3 }} = \frac{{20}}{{\sqrt 3 }} \approx 11,5\left( {\rm{N}} \right).\)

Đáp án: 11,5.

Lời giải

Lấy các điểm \(M,N,P,Q\)lần lượt trên các tia \(EA,EB,EC,ED\) sao cho

\(\overrightarrow {EM}  = \overrightarrow {{F_1}} ,\overrightarrow {EN}  = \overrightarrow {{F_2}} ,\overrightarrow {EP}  = \overrightarrow {{F_3}} ,\overrightarrow {EQ}  = \overrightarrow {{F_4}} {\rm{. }}\)

Do các lực căng \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} ,\overrightarrow {{F_4}} \) đều có cường độ là \(4700\;{\rm{N}}\) nên \(EM = EN = EP = EQ = 4700\).

Một chiếc ô tô được đặt trên mặt đáy dưới của một khung sắt có dạng hình hộp chữ nhật với đáy trên là hình chữ nhật \[ABCD (ảnh 2)

a) Sai. Ta có: \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  = \overrightarrow {EM}  + \overrightarrow {EN}  = 2\overrightarrow {EH} \), với \(H\) là trung điểm của \(MN\).

\(\overrightarrow {{F_3}}  + \overrightarrow {{F_4}}  = \overrightarrow {EP}  + \overrightarrow {EQ}  = 2\overrightarrow {EK} \), với \(K\) là trung điểm của \[PQ\] suy ra \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  \ne \overrightarrow {{F_3}}  + \overrightarrow {{F_4}} \).

b) Đúng. Ta có \(\overrightarrow {{F_1}}  + \overrightarrow {{F_3}}  = \overrightarrow {EM}  + \overrightarrow {EP}  = 2\overrightarrow {EO} \), với \(O\) là trung điểm của \(MP\).

\(\overrightarrow {{F_2}}  + \overrightarrow {{F_4}}  = \overrightarrow {EN}  + \overrightarrow {EQ}  = 2\overrightarrow {EO} ,\) với \(O\) là trung điểm của \[MP\] suy ra \(\overrightarrow {{F_1}}  + \overrightarrow {{F_3}}  = \overrightarrow {{F_2}}  + \overrightarrow {{F_4}} \).

c) Đúng. \(\left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_3}} } \right| = |2\overrightarrow {EO} | = 2EO\). Theo giả thiết, góc giữa \(EA\)với \(\left( {ABCD} \right)\) bằng \(60^\circ \) nên góc giữa \(EM\)với \(\left( {MNPQ} \right)\) cũng bằng \(60^\circ \) hay \(\widehat {SMO} = 60^\circ \).

Xét \(\Delta EMO\) có \(EM = 4700,\widehat {\,SMO} = 60^\circ \) suy ra \(EO = EM\sin 60^\circ  = 2350\sqrt 3 \).

d) Đúng. Từ đây ta tính được \(\left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_3}} } \right| = 2EO = 8141\;{\rm{N}}\).

Câu 7

A. \(\left( {3;6;3} \right)\).                                  
B. \(\left( {3;6; - 3} \right)\).          
C. \(\left( {3; - 3;6} \right)\).                          
D. \(\left( {3;2;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP