Một phòng học có thiết kế dạng hình hộp chữ nhật ABCD.A'B'C'D' với \(AB = 6{\rm{\;m}},AD = 7{\rm{\;m}},\)\(AA' = 3,5{\rm{\;m}}\). Một bóng đèn được treo ở vị trí chính giữa trần nhà của phòng học và cách trần nhà \(0,5{\rm{\;m}}\). Chọn hệ trục tọa độ Oxyz sao cho gốc \(O\) trùng với điểm \(A\), các điểm \(B,D,A'\) lần lượt nằm trên các tia Ox,Oy,Oz.

a) Điểm \(D\) có toạ độ là \(\left( {0;7;0} \right)\).
b) Các điểm C, D có tung độ bằng nhau.
c) Vectơ \(\overrightarrow {C'D'} \) có tọa độ \(\left( {6;0;0} \right)\)
d) Bóng đèn nằm tại vị trí có tọa độ \(\left( {3;3,5;3,5} \right)\).
Một phòng học có thiết kế dạng hình hộp chữ nhật ABCD.A'B'C'D' với \(AB = 6{\rm{\;m}},AD = 7{\rm{\;m}},\)\(AA' = 3,5{\rm{\;m}}\). Một bóng đèn được treo ở vị trí chính giữa trần nhà của phòng học và cách trần nhà \(0,5{\rm{\;m}}\). Chọn hệ trục tọa độ Oxyz sao cho gốc \(O\) trùng với điểm \(A\), các điểm \(B,D,A'\) lần lượt nằm trên các tia Ox,Oy,Oz.
a) Điểm \(D\) có toạ độ là \(\left( {0;7;0} \right)\).
b) Các điểm C, D có tung độ bằng nhau.
c) Vectơ \(\overrightarrow {C'D'} \) có tọa độ \(\left( {6;0;0} \right)\)
d) Bóng đèn nằm tại vị trí có tọa độ \(\left( {3;3,5;3,5} \right)\).
Quảng cáo
Trả lời:

a) Đúng. Có điểm A trùng với gốc tọa độ \({\rm{O}},D \in Oy \Rightarrow D\left( {0;{y_D};0} \right)\).
Mà \(AD = 7\), suy ra \({y_D} = 7\) hay \(D\left( {0;7;0} \right)\).
b) Đúng. Các điểm \(C,D\) có tung độ bằng nhau và bằng 7.
c) Sai. Ta có tọa độ điểm \(D'\left( {0;7;3,5} \right)\) và điểm \(C'\left( {6;7;3,5} \right)\).
Suy ra vectơ \(\overline {C'D'} \left( { - 6;0;0} \right)\).
d) Sai. Ta có điểm \(A'\left( {0;0;3,5} \right)\) và điểm \(C'\left( {6;7;3,5} \right)\).
Tọa độ trung điểm của \(A'{\rm{C'}}\) là \(\left( {\frac{{6 + 0}}{2};\frac{{7 + 0}}{2};\frac{{3,5 + 3,5}}{2}} \right) = \left( {3;3,5;3,5} \right)\).
Mà bóng đèn được treo cách trần nhà \(0,5{\rm{\;m}}\).
Vậy bóng đèn nằm tại vị trí có toạ độ \(\left( {3;3,5;3} \right)\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gán các lực \[\overrightarrow {{F_1}} = \overrightarrow {SA} ,\,\,\overrightarrow {{F_2}} = \overrightarrow {SB} ,\,\,\overrightarrow {{F_3}} = \overrightarrow {SC} .\]
Vì \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right|\) và góc tạo bởi mỗi chân của giá đỡ với mặt đất bằng \(60^\circ \) nên \(S.ABC\) là hình chóp đều.
Gọi \(M\) là trung điểm \(BC,\,\,G\) là trọng tâm \(\Delta ABC \Rightarrow SG \bot \left( {ABC} \right).\)
Ta có \(\widehat {SBG} = 60^\circ \Rightarrow SG = SA.\sin 60^\circ = \frac{{SA\sqrt 3 }}{2} \Rightarrow SA = \frac{{2SG}}{{\sqrt 3 }}.\)
Đặt \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} \Rightarrow \left| {\overrightarrow F } \right| = 30\left( {\rm{N}} \right).\)
Vì \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \Rightarrow \left| {\overrightarrow F } \right| = 3\left| {\overrightarrow {SG} } \right| \Rightarrow SG = \frac{{\left| {\overrightarrow F } \right|}}{3} = 10.\)
Vậy \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {SA} } \right| = 2\frac{{SG}}{{\sqrt 3 }} = \frac{{20}}{{\sqrt 3 }} \approx 11,5\left( {\rm{N}} \right).\)
Đáp án: 11,5.
Lời giải
Ta có \(\overrightarrow {AB} = \left( { - 1; - 1;1} \right) \Rightarrow AB = \sqrt 3 ,\overrightarrow {AC} = \left( {1; - 1;0} \right) \Rightarrow AC = \sqrt 2 \), \(\overrightarrow {BC} = \left( {2;0; - 1} \right) \Rightarrow BC = \sqrt 5 \).
a) Đúng. \(\overrightarrow {AB} \cdot \overrightarrow {AC} = 0\) do đó \(AB \bot AC\), tam giác \(ABC\) vuông tại \(A\).
b) Sai. Chu vi của tam giác là \(AB + AC + BC = \sqrt 3 + \sqrt 2 + \sqrt 5 \).
c) Sai. Diện tích là \(S = \frac{1}{2} \cdot AB \cdot AC = \frac{{\sqrt 6 }}{2}\).
d) Đúng. Tâm đường tròn ngoại tiếp là trung điểm của \(BC\) có tọa độ \(I\left( {1;1;\frac{1}{2}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.