Câu hỏi:

03/10/2025 1,776 Lưu

Xét Trái Đất trong không gian Oxyz, với \(O\) là tâm Trái Đất, tia \(Ox\) chứa giao điểm của kinh tuyến gốc và xích đạo, tia \(Oz\) chứa điểm cực bắc \(N\), tia \(Oy\) giao xích đạo tại điểm thuộc bán cầu Đông, một đơn vị dài trong không gian Oxyz tương ứng với 6371 km trong thực tế. Biết rằng nếu điểm \(M\) có vĩ độ, kinh độ tương ứng là \(\alpha ^\circ \,N;{\rm{ }}\,\beta ^\circ \,E{\rm{ }}\,\left( {0 < \alpha  < 90,\,0 < \beta  < 180} \right)\) thì điểm \(M\)có tọa độ là \(M\left( {\cos \alpha ^\circ \cos \beta ^\circ ;\,\cos \alpha ^\circ \sin \beta ^\circ ;\,\sin \alpha ^\circ } \right)\).

Tính khoảng cách giữa hai vị trí trên bề mặt Trái Đất là Cầu Hiền Lương (cũ) (Quảng Trị) có vĩ độ, kinh độ tương ứng là (ảnh 1)

Tính khoảng cách giữa hai vị trí trên bề mặt Trái Đất là Cầu Hiền Lương (cũ) (Quảng Trị) có vĩ độ, kinh độ tương ứng là \(17,0045^\circ \,N;{\rm{ }}\,107,0517^\circ \,E\) và Dinh Độc Lập (TP Hồ Chí Minh) có vĩ độ, kinh độ tương ứng là \(10,777^\circ \,N;{\rm{ }}106,695^\circ \,E\) (đơn vị: km, làm tròn kết quả đến hàng chục).

Tính khoảng cách giữa hai vị trí trên bề mặt Trái Đất là Cầu Hiền Lương (cũ) (Quảng Trị) có vĩ độ, kinh độ tương ứng là (ảnh 2)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có Toạ độ cầu Hiền Lương là

\(C\left( {\cos 17,0045^\circ \cos 107,0517^\circ ;\cos 17,0045^\circ \sin 107,0517^\circ ;\sin 17,0045^\circ } \right)\).

Toạ độ Dinh Độc Lập Là \(D\left( {\cos 10,777^\circ \cos 106,695^\circ ;\cos 10,777^\circ \sin 106,695^\circ ;\sin 10,777^\circ } \right)\).

Ta có: \(\overrightarrow {OC}  = \left( {\cos 17,0045^\circ \cos 107,0517^\circ ;\cos 17,0045^\circ \sin 107,0517^\circ ;\sin 17,0045^\circ } \right)\);

\(\overrightarrow {OD}  = \left( {\cos 10,777^\circ \cos 106,695^\circ ;\cos 10,777^\circ \sin 106,695^\circ ;\sin 10,777^\circ } \right)\).

Suy ra \(\overrightarrow {OC} .\overrightarrow {OD}  \approx 0,9941\), vì C, D thuộc mặt đất nên ta có \(\left| {\overrightarrow {OC} } \right| = \left| {\overrightarrow {OD} } \right| = 1\).

Do đó \(\cos \widehat {COD} = \frac{{\overrightarrow {OC} .\overrightarrow {OD} }}{{\left| {\overrightarrow {OC} } \right|.\left| {\overrightarrow {OD} } \right|}} \approx 0,9941\), suy ra \(\widehat {COD} \approx 6,2298^\circ \).

Khoảng cách giữa hai điểm C và D là \(l \approx \frac{{3,14159.6,2298^\circ }}{{180^\circ }}.6371 \approx 692,7\,{\rm{(km)}}\); làm tròn đến hàng chục được kết quả là \(690\,\,{\rm{(km)}}\).

Đáp án: 690.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một chiếc máy đo đạc trắc địa được đặt trên một giá đỡ ba chân. Trọng lực tác dụng lên chiếc máy có độ lớn là \(30{\rm{N}}\) và được phân bố thành ba lực \(\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_2} (ảnh 2)

Gán các lực \[\overrightarrow {{F_1}}  = \overrightarrow {SA} ,\,\,\overrightarrow {{F_2}}  = \overrightarrow {SB} ,\,\,\overrightarrow {{F_3}}  = \overrightarrow {SC} .\]

Vì \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right|\) và góc tạo bởi mỗi chân của giá đỡ với mặt đất bằng \(60^\circ \) nên \(S.ABC\) là hình chóp đều.

Gọi \(M\) là trung điểm \(BC,\,\,G\) là trọng tâm \(\Delta ABC \Rightarrow SG \bot \left( {ABC} \right).\)

Ta có \(\widehat {SBG} = 60^\circ  \Rightarrow SG = SA.\sin 60^\circ  = \frac{{SA\sqrt 3 }}{2} \Rightarrow SA = \frac{{2SG}}{{\sqrt 3 }}.\)

Đặt \(\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  \Rightarrow \left| {\overrightarrow F } \right| = 30\left( {\rm{N}} \right).\)

Vì \(\overrightarrow F  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  = \overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  = 3\overrightarrow {SG}  \Rightarrow \left| {\overrightarrow F } \right| = 3\left| {\overrightarrow {SG} } \right| \Rightarrow SG = \frac{{\left| {\overrightarrow F } \right|}}{3} = 10.\)

Vậy \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {SA} } \right| = 2\frac{{SG}}{{\sqrt 3 }} = \frac{{20}}{{\sqrt 3 }} \approx 11,5\left( {\rm{N}} \right).\)

Đáp án: 11,5.

Lời giải

a) Sai. Vì nền nhà là hình chữ nhật nên tứ giác \(OABC\) là hình chữ nhật, suy ra \({x_A} = {x_B} = 4,{y_C} = {y_B} = \) 5. Do \(A\) nằm trên trục \(Ox\) nên tọa độ điểm \(A\) là \(\left( {4;0;0} \right)\).

b) Sai. Tường nhà là hình chữ nhật, suy ra \({y_H} = {y_C} = 5,{z_H} = {z_E} = 3\). Do \(H\) nằm trên mặt phẳng \(\left( {Oyz} \right)\) nên tọa độ điểm \(H\) là \(\left( {0;5;3} \right)\).

c) Sai. Để tính góc dốc của mái nhà, ta đi tính số đo góc nhị diện có cạnh là đường thẳng \(FG\), hai mặt phẳng lần lượt là \(\left( {FGQP} \right)\) và \(\left( {FGHE} \right)\). Do mặt phẳng \(\left( {Ozx} \right)\) vuông góc với hai mặt phẳng \(\left( {FGQP} \right)\) và \(\left( {FGHE} \right)\) nên góc \(PFE\) là góc phẳng nhị diện ứng với góc nhị diện đó.

Ta có \(\overrightarrow {FP}  = \left( { - 2;0;1} \right),\overrightarrow {FE}  = \left( { - 4;0;0} \right)\).

Suy ra \({\rm{cos}}\widehat {PFE} = {\rm{cos}}\left( {\overrightarrow {FP} ,\overrightarrow {FE} } \right) = \frac{{\overrightarrow {FP}  \cdot \overrightarrow {FE} }}{{\left| {\overrightarrow {FP} \left|  \cdot  \right|\overrightarrow {FE} } \right|}} = \frac{{\left( { - 2} \right) \cdot \left( { - 4} \right) + 0 \cdot 0 + 1 \cdot 0}}{{\sqrt {{{( - 2)}^2} + {0^2} + {1^2}}  \cdot \sqrt {{{( - 4)}^2} + {0^2} + {0^2}} }} = \frac{{2\sqrt 5 }}{5}\).

Do đó, \(\widehat {PFE} \approx 26,6^\circ \). Vậy góc dốc của mái nhà khoảng \(26,6^\circ \).

d) Sai. Chiều cao bằng cao độ của điểm \(P\) suy ra \(h = 4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( {3;6;3} \right)\).                                  
B. \(\left( {3;6; - 3} \right)\).          
C. \(\left( {3; - 3;6} \right)\).                          
D. \(\left( {3;2;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP