B. Tự luận
Cho hình lập phươngABCD.A'B'C'D' có cạnh bằng \(5\).
a) Tìm góc giữa các cặp vectơ sau: \(\overrightarrow {AC} \) và \(\overrightarrow {AB} \); \(\overrightarrow {AC} \) và \(\overrightarrow {B'D'} \); \(\overrightarrow {AC} \) và \(\overrightarrow {CD} \); \(\overrightarrow {AD'} \) và \(\overrightarrow {BD} \).
b) Tính các tích vô hướng:\(\overrightarrow {AC} .\overrightarrow {AB} \); \(\overrightarrow {AC} .\overrightarrow {B'D'} \); \(\overrightarrow {AD'} .\overrightarrow {BD} \).
c) Chứng minh \(\overrightarrow {AC'} \) vuông góc với \(\overrightarrow {BD} \).
B. Tự luận
Cho hình lập phươngABCD.A'B'C'D' có cạnh bằng \(5\).
a) Tìm góc giữa các cặp vectơ sau: \(\overrightarrow {AC} \) và \(\overrightarrow {AB} \); \(\overrightarrow {AC} \) và \(\overrightarrow {B'D'} \); \(\overrightarrow {AC} \) và \(\overrightarrow {CD} \); \(\overrightarrow {AD'} \) và \(\overrightarrow {BD} \).
b) Tính các tích vô hướng:\(\overrightarrow {AC} .\overrightarrow {AB} \); \(\overrightarrow {AC} .\overrightarrow {B'D'} \); \(\overrightarrow {AD'} .\overrightarrow {BD} \).
c) Chứng minh \(\overrightarrow {AC'} \) vuông góc với \(\overrightarrow {BD} \).
Quảng cáo
Trả lời:

a) Ta có: \(\left( {\overrightarrow {AC} ,\overrightarrow {AB} } \right) = \widehat {CAB} = 45^\circ \); \(\left( {\overrightarrow {AC} ,\,\overrightarrow {B'D'} } \right) = \left( {\overrightarrow {AC} ,\,\overrightarrow {BD'} } \right) = 90^\circ \)
\[\left( {\overrightarrow {AC} ,\,\overrightarrow {CD} } \right) = \left( {\overrightarrow {CE} ,\,\overrightarrow {CD} } \right) = 180^\circ - 45^\circ = 135^\circ \] (\(E\) là điểm đối xứng của \(A\) qua \(C\))
\(\overrightarrow {AD'} = \overrightarrow {BC'} \Rightarrow \left( {\overrightarrow {AD'} ,\overrightarrow {BD} } \right) = \left( {\overrightarrow {BC'} ,\overrightarrow {BD} } \right) = \widehat {C'BD}\) mà tam giác \(C'BD\) là tam giác đều nên khi đó ta có \(\widehat {C'BD} = 60^\circ \).
b) Ta có \(AC = BD = B'D' = 5\sqrt 2 \) suy ra:
.
Do \(AC\) vuông góc với \(B'D'\) nên \(\overrightarrow {AC} .\overrightarrow {B'D'} = 0\).
.
c) Ta cần chứng minh \(\overrightarrow {AC'} .\overrightarrow {BD} = 0\)
Ta có: \(\overrightarrow {AC'} = \overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} \) và \(\overrightarrow {BD} = \overrightarrow {AD} - \overrightarrow {AB} \) nên \(\overrightarrow {AC'} .\overrightarrow {BD} = \left( {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} } \right).\left( {\overrightarrow {AD} - \overrightarrow {AB} } \right)\)
\[ = \overrightarrow {AB} .\overrightarrow {AD} - \overrightarrow {A{B^2}} + \overrightarrow {A{D^2}} - \overrightarrow {AD} .\overrightarrow {AB} + \overrightarrow {AA'} .\overrightarrow {AD} - \overrightarrow {AA'} .\overrightarrow {AB} = {5^2} - {5^2} = 0\].
Suy ra \(\overrightarrow {AC'} \) vuông góc với \(\overrightarrow {BD} \) (điều phải chứng minh).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gán các lực \[\overrightarrow {{F_1}} = \overrightarrow {SA} ,\,\,\overrightarrow {{F_2}} = \overrightarrow {SB} ,\,\,\overrightarrow {{F_3}} = \overrightarrow {SC} .\]
Vì \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right|\) và góc tạo bởi mỗi chân của giá đỡ với mặt đất bằng \(60^\circ \) nên \(S.ABC\) là hình chóp đều.
Gọi \(M\) là trung điểm \(BC,\,\,G\) là trọng tâm \(\Delta ABC \Rightarrow SG \bot \left( {ABC} \right).\)
Ta có \(\widehat {SBG} = 60^\circ \Rightarrow SG = SA.\sin 60^\circ = \frac{{SA\sqrt 3 }}{2} \Rightarrow SA = \frac{{2SG}}{{\sqrt 3 }}.\)
Đặt \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} \Rightarrow \left| {\overrightarrow F } \right| = 30\left( {\rm{N}} \right).\)
Vì \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \Rightarrow \left| {\overrightarrow F } \right| = 3\left| {\overrightarrow {SG} } \right| \Rightarrow SG = \frac{{\left| {\overrightarrow F } \right|}}{3} = 10.\)
Vậy \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {SA} } \right| = 2\frac{{SG}}{{\sqrt 3 }} = \frac{{20}}{{\sqrt 3 }} \approx 11,5\left( {\rm{N}} \right).\)
Đáp án: 11,5.
Lời giải
Ta có \(\overrightarrow {AB} = \left( { - 1; - 1;1} \right) \Rightarrow AB = \sqrt 3 ,\overrightarrow {AC} = \left( {1; - 1;0} \right) \Rightarrow AC = \sqrt 2 \), \(\overrightarrow {BC} = \left( {2;0; - 1} \right) \Rightarrow BC = \sqrt 5 \).
a) Đúng. \(\overrightarrow {AB} \cdot \overrightarrow {AC} = 0\) do đó \(AB \bot AC\), tam giác \(ABC\) vuông tại \(A\).
b) Sai. Chu vi của tam giác là \(AB + AC + BC = \sqrt 3 + \sqrt 2 + \sqrt 5 \).
c) Sai. Diện tích là \(S = \frac{1}{2} \cdot AB \cdot AC = \frac{{\sqrt 6 }}{2}\).
d) Đúng. Tâm đường tròn ngoại tiếp là trung điểm của \(BC\) có tọa độ \(I\left( {1;1;\frac{1}{2}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.