Câu hỏi:

03/10/2025 15 Lưu

Ba lực \[\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_2}} ,\,\,\overrightarrow {{F_3}} \] cùng tác dụng vào một vật có phương đôi một vuông góc với nhau và có độ lớn lần lượt là \(2\)N, \(3\)N và \(4\)N.

Tính độ lớn hợp lực của ba lực đã cho. (ảnh 1)

a) Tính độ lớn hợp hai lực \(\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} \).

b) Tính độ lớn hợp lực của ba lực đã cho.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Tính độ lớn hợp lực của ba lực đã cho. (ảnh 2)

a) Gọi \(O\) là vị trí trên vật mà ba lực cùng tác động vào. Gọi \(A,\,\,B,\,\,C\) là các điểm sao cho \(\overrightarrow {{F_1}}  = \overrightarrow {OA} \)\[\overrightarrow {{F_2}}  = \overrightarrow {OB} \,,\,\,\overrightarrow {{F_3}}  = \overrightarrow {OC} \]. Khi đó \[\left| {\overrightarrow {{F_2}}  + \overrightarrow {{F_3}} } \right| = OE = \sqrt {{3^2} + {4^2}}  = 5\]N.

b) Dựng các hình chữ nhật \(OBEC\) và \(OEFA\) thì ta có \(\left\{ \begin{array}{l}\overrightarrow {OB}  + \overrightarrow {OC}  = \overrightarrow {OE} \\\overrightarrow {OA}  + \overrightarrow {OE}  = \overrightarrow {OF} \end{array} \right.\).

Do đó \[\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  = \overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = \overrightarrow {OA}  + \overrightarrow {OE}  = \overrightarrow {OF} \]

Vậy độ lớn hợp lực của cả ba lực là:

\(\left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}} } \right| = \overrightarrow {OF}  = \sqrt {O{A^2} + O{E^2}}  = \sqrt {O{A^2} + O{B^2} + O{C^2}}  = \sqrt {{2^2} + {3^2} + {4^2}}  = \sqrt {29} \)N.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\overrightarrow {AB}  = \left( { - 1; - 1;1} \right) \Rightarrow AB = \sqrt 3 ,\overrightarrow {AC}  = \left( {1; - 1;0} \right) \Rightarrow AC = \sqrt 2 \), \(\overrightarrow {BC}  = \left( {2;0; - 1} \right) \Rightarrow BC = \sqrt 5 \).

a) Đúng. \(\overrightarrow {AB}  \cdot \overrightarrow {AC}  = 0\) do đó \(AB \bot AC\), tam giác \(ABC\) vuông tại \(A\).

b) Sai. Chu vi của tam giác là \(AB + AC + BC = \sqrt 3  + \sqrt 2  + \sqrt 5 \).

c) Sai. Diện tích là \(S = \frac{1}{2} \cdot AB \cdot AC = \frac{{\sqrt 6 }}{2}\).

d) Đúng. Tâm đường tròn ngoại tiếp là trung điểm của \(BC\) có tọa độ \(I\left( {1;1;\frac{1}{2}} \right)\).

Lời giải

a) Đúng. Theo công thức vì \[G\] là trọng tâm tứ diện \[ABCD \Rightarrow \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \].

b) Đúng. Ta có:

\[\overrightarrow {OG}  = \frac{1}{4}\left( {\overrightarrow {OG}  + \overrightarrow {OG}  + \overrightarrow {OG}  + \overrightarrow {OG} } \right) = \frac{1}{4}\left( {\overrightarrow {OA}  + \overrightarrow {AG}  + \overrightarrow {OB}  + \overrightarrow {BG}  + \overrightarrow {OC}  + \overrightarrow {CG}  + \overrightarrow {OD}  + \overrightarrow {DG} } \right)\]\[ = \frac{1}{4}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD} } \right)\].

c) Đúng. \[\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0  \Leftrightarrow \overrightarrow {GA}  + \overrightarrow {GC}  + \overrightarrow {GD}  =  - \overrightarrow {GB}  = \overrightarrow {BG} \].

d) Sai. \[\overrightarrow {AG}  = \overrightarrow {AO}  + \overrightarrow {OG}  = \overrightarrow {AO}  + \frac{1}{4}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD} } \right) = \overrightarrow {AO}  + \frac{1}{4}\left( {4\overrightarrow {OA}  + \overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} } \right)\]

\[ = \overrightarrow {AO}  + \overrightarrow {OA}  + \frac{1}{4}\left( {\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} } \right) = \frac{1}{4}\left( {\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} } \right)\].

Câu 4

A. \(\left( {3;6;3} \right)\).                                  
B. \(\left( {3;6; - 3} \right)\).          
C. \(\left( {3; - 3;6} \right)\).                          
D. \(\left( {3;2;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP