Ba lực \[\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_2}} ,\,\,\overrightarrow {{F_3}} \] cùng tác dụng vào một vật có phương đôi một vuông góc với nhau và có độ lớn lần lượt là \(2\)N, \(3\)N và \(4\)N.

a) Tính độ lớn hợp hai lực \(\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} \).
b) Tính độ lớn hợp lực của ba lực đã cho.
Ba lực \[\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_2}} ,\,\,\overrightarrow {{F_3}} \] cùng tác dụng vào một vật có phương đôi một vuông góc với nhau và có độ lớn lần lượt là \(2\)N, \(3\)N và \(4\)N.

a) Tính độ lớn hợp hai lực \(\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} \).
b) Tính độ lớn hợp lực của ba lực đã cho.
Quảng cáo
Trả lời:

a) Gọi \(O\) là vị trí trên vật mà ba lực cùng tác động vào. Gọi \(A,\,\,B,\,\,C\) là các điểm sao cho \(\overrightarrow {{F_1}} = \overrightarrow {OA} \)\[\overrightarrow {{F_2}} = \overrightarrow {OB} \,,\,\,\overrightarrow {{F_3}} = \overrightarrow {OC} \]. Khi đó \[\left| {\overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right| = OE = \sqrt {{3^2} + {4^2}} = 5\]N.
b) Dựng các hình chữ nhật \(OBEC\) và \(OEFA\) thì ta có \(\left\{ \begin{array}{l}\overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OE} \\\overrightarrow {OA} + \overrightarrow {OE} = \overrightarrow {OF} \end{array} \right.\).
Do đó \[\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OA} + \overrightarrow {OE} = \overrightarrow {OF} \]
Vậy độ lớn hợp lực của cả ba lực là:
\(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right| = \overrightarrow {OF} = \sqrt {O{A^2} + O{E^2}} = \sqrt {O{A^2} + O{B^2} + O{C^2}} = \sqrt {{2^2} + {3^2} + {4^2}} = \sqrt {29} \)N.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gán các lực \[\overrightarrow {{F_1}} = \overrightarrow {SA} ,\,\,\overrightarrow {{F_2}} = \overrightarrow {SB} ,\,\,\overrightarrow {{F_3}} = \overrightarrow {SC} .\]
Vì \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right|\) và góc tạo bởi mỗi chân của giá đỡ với mặt đất bằng \(60^\circ \) nên \(S.ABC\) là hình chóp đều.
Gọi \(M\) là trung điểm \(BC,\,\,G\) là trọng tâm \(\Delta ABC \Rightarrow SG \bot \left( {ABC} \right).\)
Ta có \(\widehat {SBG} = 60^\circ \Rightarrow SG = SA.\sin 60^\circ = \frac{{SA\sqrt 3 }}{2} \Rightarrow SA = \frac{{2SG}}{{\sqrt 3 }}.\)
Đặt \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} \Rightarrow \left| {\overrightarrow F } \right| = 30\left( {\rm{N}} \right).\)
Vì \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \Rightarrow \left| {\overrightarrow F } \right| = 3\left| {\overrightarrow {SG} } \right| \Rightarrow SG = \frac{{\left| {\overrightarrow F } \right|}}{3} = 10.\)
Vậy \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {SA} } \right| = 2\frac{{SG}}{{\sqrt 3 }} = \frac{{20}}{{\sqrt 3 }} \approx 11,5\left( {\rm{N}} \right).\)
Đáp án: 11,5.
Lời giải

Gọi I là tâm của hình chữ nhật \[ABCD\].
Ta có \(BD = \sqrt[{}]{{{{900}^2} + {{1200}^2}}} = 1500 \Rightarrow ID = 750\).
Theo giả thiết ta có \(\tan \widehat {SDI} = \frac{1}{5} \Rightarrow \frac{{SI}}{{ID}} = \frac{1}{5} \Rightarrow SI = \frac{1}{5}ID = \frac{1}{5}.750 = 150\).
Gọi H là tâm của hình chữ nhật OKNM. Từ giả thiết ta có \(H\left( {450;600;0} \right)\).
Ta có \(SH = IH + SI = 450 + 150 = 600\).
Do đó \(S\left( {450;600;600} \right) \Rightarrow a + b + c = 450 + 600 + 600 = 1650\).
Đáp án: 1650.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



