Ba lực \[\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_2}} ,\,\,\overrightarrow {{F_3}} \] cùng tác dụng vào một vật có phương đôi một vuông góc với nhau và có độ lớn lần lượt là \(2\)N, \(3\)N và \(4\)N.

a) Tính độ lớn hợp hai lực \(\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} \).
b) Tính độ lớn hợp lực của ba lực đã cho.
Ba lực \[\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_2}} ,\,\,\overrightarrow {{F_3}} \] cùng tác dụng vào một vật có phương đôi một vuông góc với nhau và có độ lớn lần lượt là \(2\)N, \(3\)N và \(4\)N.
a) Tính độ lớn hợp hai lực \(\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} \).
b) Tính độ lớn hợp lực của ba lực đã cho.
Quảng cáo
Trả lời:

a) Gọi \(O\) là vị trí trên vật mà ba lực cùng tác động vào. Gọi \(A,\,\,B,\,\,C\) là các điểm sao cho \(\overrightarrow {{F_1}} = \overrightarrow {OA} \)\[\overrightarrow {{F_2}} = \overrightarrow {OB} \,,\,\,\overrightarrow {{F_3}} = \overrightarrow {OC} \]. Khi đó \[\left| {\overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right| = OE = \sqrt {{3^2} + {4^2}} = 5\]N.
b) Dựng các hình chữ nhật \(OBEC\) và \(OEFA\) thì ta có \(\left\{ \begin{array}{l}\overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OE} \\\overrightarrow {OA} + \overrightarrow {OE} = \overrightarrow {OF} \end{array} \right.\).
Do đó \[\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OA} + \overrightarrow {OE} = \overrightarrow {OF} \]
Vậy độ lớn hợp lực của cả ba lực là:
\(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right| = \overrightarrow {OF} = \sqrt {O{A^2} + O{E^2}} = \sqrt {O{A^2} + O{B^2} + O{C^2}} = \sqrt {{2^2} + {3^2} + {4^2}} = \sqrt {29} \)N.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gán các lực \[\overrightarrow {{F_1}} = \overrightarrow {SA} ,\,\,\overrightarrow {{F_2}} = \overrightarrow {SB} ,\,\,\overrightarrow {{F_3}} = \overrightarrow {SC} .\]
Vì \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right|\) và góc tạo bởi mỗi chân của giá đỡ với mặt đất bằng \(60^\circ \) nên \(S.ABC\) là hình chóp đều.
Gọi \(M\) là trung điểm \(BC,\,\,G\) là trọng tâm \(\Delta ABC \Rightarrow SG \bot \left( {ABC} \right).\)
Ta có \(\widehat {SBG} = 60^\circ \Rightarrow SG = SA.\sin 60^\circ = \frac{{SA\sqrt 3 }}{2} \Rightarrow SA = \frac{{2SG}}{{\sqrt 3 }}.\)
Đặt \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} \Rightarrow \left| {\overrightarrow F } \right| = 30\left( {\rm{N}} \right).\)
Vì \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \Rightarrow \left| {\overrightarrow F } \right| = 3\left| {\overrightarrow {SG} } \right| \Rightarrow SG = \frac{{\left| {\overrightarrow F } \right|}}{3} = 10.\)
Vậy \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {SA} } \right| = 2\frac{{SG}}{{\sqrt 3 }} = \frac{{20}}{{\sqrt 3 }} \approx 11,5\left( {\rm{N}} \right).\)
Đáp án: 11,5.
Câu 2
Lời giải
Chọn B
Gọi \(M\) là trung điểm cạnh \(BC\). Ta có: \(\overrightarrow u = \overrightarrow {AB} + \overrightarrow {AC} = 2.\overrightarrow {AM} = 2.\frac{3}{2}.\overrightarrow {AG} = 3\overrightarrow {AG} = \left( {3;6; - 3} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.