Câu hỏi:

03/10/2025 67 Lưu

Biết \[A,\,\,B,\,\,C\] là các góc của tam giác \[ABC,\] khi đó.              

A. \[\sin C = - \sin \left( {A + B} \right).\]                     
B. \[\cos C = \cos \left( {A + B} \right).\]              
C. \[\tan C = \tan \left( {A + B} \right).\]  
D. \[\cot C = - \cot \left( {A + B} \right).\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Vì \[A,\,\,B,\,\,C\] là các góc của tam giác \[ABC\] nên \[A + B + C = {180^o} \Rightarrow C = {180^o} - \left( {A + B} \right).\]

Do đó \[C\] và \[\left( {A + B} \right)\] là 2 góc bù nhau.

\[ \Rightarrow \sin C = \sin \left( {A + B} \right);\,\,\cos C =  - \cos \left( {a + b} \right);\,\,\tan C =  - \tan \left( {A + B} \right);\,\,\cot C = \cot \left( {A + B} \right).\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(1\).                      
B. \[2\].                    
C. \(3\).                           
D. \[4\].

Lời giải

Chọn D

Đặt \(t = \tan \frac{x}{2} = \frac{1}{2}\) nên \(\sin x = \frac{{2t}}{{1 + {t^2}}} = \frac{{2\frac{1}{2}}}{{1 + \frac{1}{4}}} = \frac{4}{5}\), \(\cos x = \frac{{1 - {t^2}}}{{1 + {t^2}}} = \frac{{1 - \frac{1}{4}}}{{1 + \frac{1}{4}}} = \frac{3}{5}\).

Vậy \(\frac{{\sin x}}{{2 - 3\cos x}} = \frac{{\frac{4}{5}}}{{2 - \frac{9}{5}}} = 4\).

Câu 2

A. \[2\].                      
B. \(3\).                    
C. \(4\).                           
D. \(5\).

Lời giải

Chọn A

\(\tan x = 0.5 = \frac{1}{2},\,\sin y = \frac{3}{5}\,\,\left( {0 < y < {{90}^0}} \right) \Rightarrow \cos y = \frac{4}{5} \Rightarrow \tan y = \frac{3}{4}\).

\(\tan \left( {x + y} \right) = \frac{{\tan x + \tan y}}{{1 - \tan x.\tan y}} = \frac{{\frac{1}{2} + \frac{3}{4}}}{{1 - \frac{1}{2}.\frac{3}{4}}} = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP