Giả sử một vật dao động điều hoà xung quanh vị trí cân bằng theo phương trình
\(x = 2{\rm{cos}}\left( {5t - \frac{\pi }{6}} \right)\)
Ở đây, thời gian \(t\) tính bằng giây và quãng đường \(x\) tính bằng centimét. Hãy cho biết trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng bao nhiêu lần?
Giả sử một vật dao động điều hoà xung quanh vị trí cân bằng theo phương trình
\(x = 2{\rm{cos}}\left( {5t - \frac{\pi }{6}} \right)\)
Ở đây, thời gian \(t\) tính bằng giây và quãng đường \(x\) tính bằng centimét. Hãy cho biết trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng bao nhiêu lần?
Quảng cáo
Trả lời:

Vị trí cân bằng của vật dao động điều hòa là vị trí vật đứng yên, khi đó x = 0, ta có
\(\begin{array}{l}2{\rm{cos}}\left( {5t - \frac{\pi }{6}} \right) = 0\\ \Leftrightarrow {\rm{cos}}\left( {5t - \frac{\pi }{6}} \right) = 0\\ \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\\ \Leftrightarrow t = \frac{{2\pi }}{{15}} + k\frac{\pi }{5},k \in \mathbb{Z}\end{array}\)
Trong khoảng thời gian từ 0 đến 6 giây, tức là \(0 \le t \le 6\) hay \(0 \le \frac{{2\pi }}{{15}} + k\frac{\pi }{5} \le 6\)
\( \Leftrightarrow - \frac{2}{3} \le k \le \frac{{90 - 2\pi }}{{3\pi }}\)
Vì \(k \in \mathbb{Z}\) nên \(k \in \left\{ {0;1;2;3;4;5;6;7;8} \right\}\).
Vậy trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng 9 lần.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \(\cos \left( {{{75}^^\circ } - x} \right) = - \frac{{\sqrt 2 }}{2} \Leftrightarrow \cos \left( {{{75}^^\circ } - x} \right) = \cos {135^^\circ }\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{{75}^^\circ } - x = {{135}^^\circ } + k{{360}^^\circ }}\\{{{75}^^\circ } - x = - {{135}^^\circ } + k{{360}^^\circ }}\end{array}(k \in \mathbb{Z}) \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - {{60}^^\circ } - k{{360}^^\circ }}\\{x = {{210}^^\circ } - k{{360}^^\circ }}\end{array}(k \in \mathbb{Z}).} \right.} \right.\)
Vậy phương trình có nghiệm: \(x = - {60^^\circ } - k{360^^\circ };x = {210^^\circ } - k{360^^\circ }(k \in \mathbb{Z})\).
Lời giải
a) Sai |
b) Đúng |
c) Sai |
d) Sai |
Ta có: \(\sin x = - \frac{1}{2} \Leftrightarrow \sin x = \sin \left( { - \frac{\pi }{6}} \right)\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - \frac{\pi }{6} + k2\pi }\\{x = \pi - ( - \frac{\pi }{6}) + k2\pi }\end{array}(k \in \mathbb{Z}) \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - \frac{\pi }{6} + k2\pi }\\{x = \frac{{7\pi }}{6} + k2\pi }\end{array}(k \in \mathbb{Z})} \right.} \right.\)
Vậy phương trình có nghiệm là: \(x = - \frac{\pi }{6} + k2\pi ;x = \frac{{7\pi }}{6} + k2\pi (k \in \mathbb{Z})\).
Phương trình có nghiệm âm lớn nhất bằng \( - \frac{\pi }{6}\)
Khi \(x \in \left( { - \pi ;\pi } \right)\) phương trình có hai nghiệm
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.