Câu hỏi:

04/10/2025 129 Lưu

Giả sử một vật dao động điều hoà xung quanh vị trí cân bằng theo phương trình

\(x = 2{\rm{cos}}\left( {5t - \frac{\pi }{6}} \right)\)

Ở đây, thời gian \(t\) tính bằng giây và quãng đường \(x\) tính bằng centimét. Hãy cho biết trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng bao nhiêu lần?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vị trí cân bằng của vật dao động điều hòa là vị trí vật đứng yên, khi đó x = 0, ta có

\(\begin{array}{l}2{\rm{cos}}\left( {5t - \frac{\pi }{6}} \right) = 0\\ \Leftrightarrow {\rm{cos}}\left( {5t - \frac{\pi }{6}} \right) = 0\\ \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\\ \Leftrightarrow t = \frac{{2\pi }}{{15}} + k\frac{\pi }{5},k \in \mathbb{Z}\end{array}\)

Trong khoảng thời gian từ 0 đến 6 giây, tức là \(0 \le t \le 6\) hay \(0 \le \frac{{2\pi }}{{15}} + k\frac{\pi }{5} \le 6\)

\( \Leftrightarrow - \frac{2}{3} \le k \le \frac{{90 - 2\pi }}{{3\pi }}\)

\(k \in \mathbb{Z}\) nên \(k \in \left\{ {0;1;2;3;4;5;6;7;8} \right\}\).

Vậy trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng 9 lần.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho phương trình lượng giác \(2\cos x = \sqrt 3 \), khi đó:

a) Phương trình có nghiệm \(x = \pm \frac{\pi }{3} + k2\pi (k \in \mathbb{Z})\)

b) Trong đoạn \(\left[ {0;\frac{{5\pi }}{2}} \right]\) phương trình có 4 nghiệm

c) Tổng các nghiệm của phương trình trong đoạn \(\left[ {0;\frac{{5\pi }}{2}} \right]\) bằng \(\frac{{25\pi }}{6}\)

d) Trong đoạn \(\left[ {0;\frac{{5\pi }}{2}} \right]\) phương trình có nghiệm lớn nhất bằng \(\frac{{13\pi }}{6}\)

Lời giải

a) Sai

b) Sai

c) Đúng

d) Đúng

Ta có: \(2\cos x = \sqrt 3 \Leftrightarrow \cos x = \frac{{\sqrt 3 }}{2} \Leftrightarrow x = \pm \frac{\pi }{6} + k2\pi (k \in \mathbb{Z})\).

\(x \in \left[ {0;\frac{{5\pi }}{2}} \right]\) nên \(x \in \left\{ {\frac{\pi }{6};\frac{{11\pi }}{6};\frac{{13\pi }}{6}} \right\}\).

Vậy nghiệm \(x\) thoả mãn đề bài là: \(x \in \left\{ {\frac{\pi }{6};\frac{{11\pi }}{6};\frac{{13\pi }}{6}} \right\}\).

Câu 2

Phần 3. Câu hỏi trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Tìm nghiệm phương trình lượng giác: cos75°x=22

Lời giải

Ta có: \(\cos \left( {{{75}^^\circ } - x} \right) = - \frac{{\sqrt 2 }}{2} \Leftrightarrow \cos \left( {{{75}^^\circ } - x} \right) = \cos {135^^\circ }\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{{75}^^\circ } - x = {{135}^^\circ } + k{{360}^^\circ }}\\{{{75}^^\circ } - x = - {{135}^^\circ } + k{{360}^^\circ }}\end{array}(k \in \mathbb{Z}) \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - {{60}^^\circ } - k{{360}^^\circ }}\\{x = {{210}^^\circ } - k{{360}^^\circ }}\end{array}(k \in \mathbb{Z}).} \right.} \right.\)

Vậy phương trình có nghiệm: \(x = - {60^^\circ } - k{360^^\circ };x = {210^^\circ } - k{360^^\circ }(k \in \mathbb{Z})\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP