Câu hỏi:

04/10/2025 470 Lưu

Trên đường tròn bán kính \(R = 6\), cung \(60^\circ \) có độ dài bằng bao nhiêu?

A. \(l = \frac{\pi }{2}\).                             
B. \(l = 4\pi \).                               
C. \(l = 2\pi \).         
D. \(l = \pi \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

\(60^\circ  = \frac{\pi }{3}\)rad.

Ta có: cung có số đo \(\alpha \) rad của đường tròn có bán kính \(R\) có độ dài \(l = R\alpha \).

Do đó cung \(60^\circ \) có độ dài bằng \(l = 6.\frac{\pi }{3}\)\( = 2\pi \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Đúng

c) Sai

d) Đúng

 

Phương trình \( \Leftrightarrow \frac{{1 - \cos 4x}}{2} + \frac{{1 + \cos 10x}}{2} = 1\)

\( \Leftrightarrow \cos 10x = \cos 4x \Leftrightarrow \left[ \begin{array}{l}10x = 4x + k2\pi \\10x = - 4x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{k\pi }}{3}\\x = \frac{{k\pi }}{7}\end{array} \right.\)

Vậy nghiệm dương nhỏ nhất và nghiệm âm lớn nhất của phương trình là: \(x = \frac{\pi }{7},x = - \frac{\pi }{7}\).

Câu 2

A. \[\frac{\pi }{4}\].  
B. \[\frac{\pi }{3}\].                       
C. \[\frac{\pi }{{16}}\].                  
D. \[\frac{\pi }{2}\].

Lời giải

Chọn D

Cung có số đo \[\alpha \] rad của đường tròn bán kính \[R\] có độ dài \[l = R.\alpha \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\tan \alpha < 0\).                                
B. \(\cot \alpha > 0\).              
C. \(\sin \alpha > 0\).                             
D. \(\cos \alpha > 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP