Câu hỏi:

04/10/2025 16 Lưu

Cho phương trình lượng giác \({(\sin x + \cos x)^2} = 2{\cos ^2}3x\), vậy:

a) Phương trình đã cho tương đương với phương trình \(1 + \sin 2x = 3 + \cos 6x\)

b) Nghiệm dương nhỏ nhất của phương trình lớn hơn \(\frac{\pi }{7}\)

c) Nghiệm âm lớn nhất của phương trình là \(x = - \frac{\pi }{8}\)

d) Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất bằng 0

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai

b) Sai

c) Đúng

d) Sai

 

Phương trình \( \Leftrightarrow 1 + \sin 2x = 1 + \cos 6x\)

\( \Leftrightarrow \cos 6x = \sin 2x = \cos \left( {\frac{\pi }{2} - 2x} \right) \Leftrightarrow \left[ \begin{array}{l}6x = \frac{\pi }{2} - 2x + k2\pi \\6x = - \frac{\pi }{2} + 2x + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{16}} + \frac{{k\pi }}{4}\\x = - \frac{\pi }{8} + \frac{{k\pi }}{2}\end{array} \right.\)

Vậy nghiệm dương nhỏ nhất và nghiệm âm lớn nhất của phương trình đã cho là: \(x = \frac{\pi }{{16}},x = - \frac{\pi }{8}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo bài ra ta có: \({\rm{i}} = {50^ \circ },{{\rm{n}}_1} = 1,{{\rm{n}}_2} = 1,33\), thay vào \(\frac{{{\rm{sin}}i}}{{{\rm{sinr}}}} = \frac{{{n_2}}}{{{n_1}}}\) ta được:

 sin50sinr=1,331 (đk sin r0 )  sinr=sin501,33 sinr0,57597 (thoa mãn đki)  sinrsin3510'

\(\begin{array}{*{20}{r}}{}&{\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{r \approx {{35}^ \circ }{{10}^{\rm{'}}} + k{{360}^ \circ }}\\{r \approx {{180}^ \circ } - {{35}^ \circ }{{10}^{\rm{'}}} + k{{360}^ \circ }}\end{array}\left( {k \in \mathbb{Z}} \right)} \right.}\\{}&{\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{r \approx {{35}^ \circ }{{10}^{\rm{'}}} + k{{360}^ \circ }}\\{r \approx {{144}^ \circ }{{50}^{\rm{'}}} + k{{360}^ \circ }}\end{array}\left( {k \in \mathbb{Z}} \right)} \right.}\end{array}\)\({0^ \circ } < r < {90^ \circ }\) nên \(r \approx {35^ \circ }{10^{\rm{'}}}\).
Vậy góc khúc xạ
\(r \approx {35^ \circ }{10^{\rm{'}}}\).

Câu 2

A. \[\frac{\pi }{4}\].  
B. \[\frac{\pi }{3}\].                       
C. \[\frac{\pi }{{16}}\].                  
D. \[\frac{\pi }{2}\].

Lời giải

Chọn D

Cung có số đo \[\alpha \] rad của đường tròn bán kính \[R\] có độ dài \[l = R.\alpha \].

Câu 3

A. \(144^\circ \).        
B. \(288^\circ \).      
C. \(36^\circ \).                               
D. \(72^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Phần 3. Câu hỏi trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Với giá trị nào của \[n\] thì đẳng thức sau luôn đúng \[\sqrt {\frac{1}{2} + \frac{1}{2}\sqrt {\frac{1}{2} + \frac{1}{2}\sqrt {\frac{1}{2} + \frac{1}{2}\cos x} } } = \cos \frac{x}{n}\], \[0 < x < \frac{\pi }{2}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP