Câu hỏi:

05/10/2025 6 Lưu

Một bác tài xế thống kê lại độ dài quãng đường (đơn vị: km) bác đã lái xe mỗi ngày trong một tháng ở bảng sau:

Độ dài quãng đường (km)

[50; 100)

[100; 150)

[150; 200)

[200; 250)

[250; 300)

Số ngày

5

10

9

4

2

Độ lệch chuẩn của mẫu số liệu ghép nhóm gần bằng

A. \(33,91\)                   
  B. \(155,15\).                
C. \(55,68\).         
D. \(36,54\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta bảng sau:

Độ dài quãng đường (km)

[50; 100)

[100; 150)

[150; 200)

[200; 250)

[250; 300)

Giá trị đại diện

75

125

175

225

275

Số ngày

5

10

9

4

2

 Số trung bình của mẫu số liệu ghép nhóm là: 

\[\overline x = \frac{{5.75 + 10.125 + 9.175 + 4.225 + 2.275}}{{30}} = 155\].

Phương sai của mẫu số liệu ghép nhóm là:

\[{S^2} = \frac{{5.{{(75 - 155)}^2} + 10.{{(125 - 155)}^2} + 9{{(175 - 155)}^2} + 4{{(225 - 155)}^2} + 2{{(275 - 155)}^2}}}{{30}} = 3100\]

Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \(S = \sqrt {{S^2}} = \sqrt {3100} \approx 55,68\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) ĐÚNG

Khoảng biến thiên \(R = 19 - 14 = 5\).

b) ĐÚNG

Cỡ mẫu là: \(1 + 3 + 8 + 6 + 2 = 20\).

Gọi \({x_1};{x_2};...;{x_{20}}\) là tuổi thọ của \(20\) con hổ được sắp xếp theo thứ tự không giảm.

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{{{x_5} + {x_6}}}{2} \in \left[ {16;17} \right)\)nên nhóm chứa tứ phân vị thứ nhất là \(\left[ {16;17} \right)\).

c) SAI

Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{{{x_{15}} + {x_{16}}}}{2} \in \left[ {17;18} \right)\). Do đó nhóm chứa tứ phân vị thứ ba là \(\left[ {17;18} \right)\)

d) ĐÚNG

Tần số tích lũy của nhóm \(\left[ {17;18} \right)\)là \(1 + 3 + 8 + 6 = 18\).

Lời giải

Trong mẫu số liệu ghép nhóm đó,ta có: đầu mút trái của nhóm 1 là \({a_1} = 375\) ,đầu mút phải của nhóm 6 là \({a_7} = 825\) . Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là: \(R = {a_7} - {a_1} = 825 - 375 = 450\) .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP