Phần 1. Câu hỏi trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi, thí sinh chỉ chọn 1 phương án.
Cho bốn điểm A,B,C,D không đồng phẳng. Gọi \[I,K\] lần lượt là trung điểm hai đoạn thẳng \[AD\] và \[BC\]. \[IK\] là giao tuyến của cặp mặt phẳng nào sau đây?
Phần 1. Câu hỏi trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi, thí sinh chỉ chọn 1 phương án.
Cho bốn điểm A,B,C,D không đồng phẳng. Gọi \[I,K\] lần lượt là trung điểm hai đoạn thẳng \[AD\] và \[BC\]. \[IK\] là giao tuyến của cặp mặt phẳng nào sau đây?Quảng cáo
Trả lời:
Chọn C
![Chọn C \[\left\{ \begin{array}{l}I \in AD \subset \left( {KAD} \right)\\I \in \left( {IBC} \right)\end{array} \right.\] \[ \Rightarrow I\] là điểm chung t (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/20-1759680157.png)
\[\left\{ \begin{array}{l}I \in AD \subset \left( {KAD} \right)\\I \in \left( {IBC} \right)\end{array} \right.\] \[ \Rightarrow I\] là điểm chung thứ nhất của hai mặt phẳng \[\left( {IBC} \right)\] và \[\left( {KAD} \right)\].
\[\left\{ \begin{array}{l}K \in BC \subset \left( {IBC} \right)\\K \in \left( {KAD} \right)\end{array} \right.\]\[ \Rightarrow K\] là điểm chung thứ hai của hai mặt phẳng \[\left( {IBC} \right)\] và \[\left( {KAD} \right)\].
Vậy \[\left( {IBC} \right) \cap \left( {KAD} \right) = IK\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Đúng |
b) Đúng |
c) Đúng |
d) Sai |
b) Trong mặt phẳng \((ABC)\), vẽ giao điểm \(E\) của \(MN\) và \(AC\).
Ta có \(E \in AC\), suy ra \(E \in (SAC)\).
Vậy \(E\) là giao điểm của đường thẳng \(MN\) và mặt phẳng \((SAC)\).
c) Ta có \(S\) và \(E\) là hai điểm chung của hai mặt phẳng \((SMN)\) và \((SAC)\).

Suy ra \((SMN) \cap (SAC) = SE\).
d) Trong mặt phẳng \((ABC)\), vẽ giao điểm \(F\) của \(AN\) và \(MC\).
Ta có \(S\) và \(F\) là hai điểm chung của hai mặt phẳng \((SAN)\) và \((SCM)\).
Suy ra \((SAN) \cap (SCM) = SF\).
Câu 2
Lời giải
Chọn D

Ta có: \(\left\{ \begin{array}{l}E \in MK\\MK \subset \left( P \right)\end{array} \right. \Rightarrow E \in \left( P \right)\).
Chứng minh tương tự ta có:\(F \in \left( P \right),\,\,B \in \left( P \right)\).
Ta có: \(\left\{ \begin{array}{l}E \in AD\\AD \subset \left( {ABCD} \right)\end{array} \right. \Rightarrow E \in \left( {ABCD} \right)\).
Chứng minh tương tự ta có:\(F \in \left( {ABCD} \right),\,\,B \in \left( {ABCD} \right)\).
Nhận thấy các điểm \(E,\,\,B,\,\,F\) là các điểm chung của hai mặt phẳng \(\left( {ABCD} \right)\) và \(\left( P \right)\) nên chúng thẳng hàng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

