Câu hỏi:

05/10/2025 15 Lưu

Phần 1. Câu hỏi trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi, thí sinh chỉ chọn 1 phương án.

Cho bốn điểm A,B,C,D không đồng phẳng. Gọi \[I,K\] lần lượt là trung điểm hai đoạn thẳng \[AD\]\[BC\]. \[IK\] là giao tuyến của cặp mặt phẳng nào sau đây?              

A. \[\left( {IBC} \right)\]\[\left( {KBD} \right)\].                          
B. \[\left( {IBC} \right)\]\[\left( {KCD} \right)\].              
C. \[\left( {IBC} \right)\]\[\left( {KAD} \right)\].                          
D. \[\left( {ABI} \right)\]\[\left( {KAD} \right)\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Chọn C   \[\left\{ \begin{array}{l}I \in AD \subset \left( {KAD} \right)\\I \in \left( {IBC} \right)\end{array} \right.\] \[ \Rightarrow I\] là điểm chung t (ảnh 1)

\[\left\{ \begin{array}{l}I \in AD \subset \left( {KAD} \right)\\I \in \left( {IBC} \right)\end{array} \right.\] \[ \Rightarrow I\] là điểm chung thứ nhất của hai mặt phẳng \[\left( {IBC} \right)\] và \[\left( {KAD} \right)\].

\[\left\{ \begin{array}{l}K \in BC \subset \left( {IBC} \right)\\K \in \left( {KAD} \right)\end{array} \right.\]\[ \Rightarrow K\] là điểm chung thứ hai của hai mặt phẳng \[\left( {IBC} \right)\] và \[\left( {KAD} \right)\].

Vậy \[\left( {IBC} \right) \cap \left( {KAD} \right) = IK\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Đúng

c) Đúng

d) Sai

 

b) Trong mặt phẳng \((ABC)\), vẽ giao điểm \(E\) của \(MN\)\(AC\).

Ta có \(E \in AC\), suy ra \(E \in (SAC)\).

Vậy \(E\) là giao điểm của đường thẳng \(MN\) và mặt phẳng \((SAC)\).

c) Ta có \(S\)\(E\) là hai điểm chung của hai mặt phẳng \((SMN)\)\((SAC)\).

Cho tứ diện SABC. Gọi \(M\) và \(N\) lần lượt là hai điểm trên hai cạnh \(AB\ (ảnh 1)

Suy ra \((SMN) \cap (SAC) = SE\).

d) Trong mặt phẳng \((ABC)\), vẽ giao điểm \(F\) của \(AN\)\(MC\).

Ta có \(S\)\(F\) là hai điểm chung của hai mặt phẳng \((SAN)\)\((SCM)\).

Suy ra \((SAN) \cap (SCM) = SF\).

Câu 2

A. \(P\) là giao điểm của hai đường thẳng \(DY\) với \(SB\).                              
B. \(P\) là giao điểm của hai đường thẳng \(DY\) với \(SA\).              
C. \(P\) là giao điểm của hai đường thẳng \(DY\) với \(AB\).                            
D. \(P\) là giao điểm của hai đường thẳng \(B{\rm{W}}\) với \(SC\).

Lời giải

Chọn A

Trong mặt phẳng \(\left( {SBD} \right)\) gọi \(P\) là giao điểm của \(DY\) và \(SB\). (ảnh 2)

Trong mặt phẳng \(\left( {SBD} \right)\) gọi \(P\) là giao điểm của \(DY\) và \(SB\).

Ta có: \(\left\{ \begin{array}{l}P \in DY\\P \in SB \subset \left( {SAB} \right) \Rightarrow P \in \left( {SAB} \right)\end{array} \right.\). Vậy \(P\) là giao điểm của \(DY\) với \(\left( {SAB} \right)\).

Câu 3

A. Ba điểm \(E,\,\,B,\,\,K\) thẳng hàng.             
B. Ba điểm \(F,\,\,K,\,\,I\) thẳng hàng.              
C. Ba điểm \(E,\,\,B,\,\,I\) thẳng hàng.              
D. Ba điểm \(E,\,\,B,\,\,F\) thẳng hàng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overrightarrow {IA} = - \,2\overrightarrow {IM} \).                      
B. \(\overrightarrow {IA} = - \,3\overrightarrow {IM} \).       
C. \(\overrightarrow {IA} = 2\overrightarrow {IM} \).                    
D. \(IA = 2,5IM\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[SD\].                         
B. \[SO\] (\[O\] là tâm hình bình hành \[ABCD\]).             
C. \[SG\] (\[G\] là trung điểm \[AB\]).                            
D. \[SF\](\[F\] là trung điểm \[CD\]).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP