Cho tứ diện ABCD. Gọi \[G\] là trọng tâm của tam giác \[BCD\]. Giao tuyến của mặt phẳng \[\left( {ACD} \right)\] và \[\left( {GAB} \right)\] là
Quảng cáo
Trả lời:

Chọn B
Gọi giao điểm của \[BG\] với \[CD\] là \[N\], ta thấy hai mặt phẳng \[\left( {ACD} \right)\] và \[\left( {GAB} \right)\] có hai điểm chung là \[A\] và \[N\] nên giao tuyến của chúng là \[AN\].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng |
b) Đúng |
c) Đúng |
d) Sai |
b) Trong mặt phẳng \((ABC)\), vẽ giao điểm \(E\) của \(MN\) và \(AC\).
Ta có \(E \in AC\), suy ra \(E \in (SAC)\).
Vậy \(E\) là giao điểm của đường thẳng \(MN\) và mặt phẳng \((SAC)\).
c) Ta có \(S\) và \(E\) là hai điểm chung của hai mặt phẳng \((SMN)\) và \((SAC)\).
Suy ra \((SMN) \cap (SAC) = SE\).
d) Trong mặt phẳng \((ABC)\), vẽ giao điểm \(F\) của \(AN\) và \(MC\).
Ta có \(S\) và \(F\) là hai điểm chung của hai mặt phẳng \((SAN)\) và \((SCM)\).
Suy ra \((SAN) \cap (SCM) = SF\).
Câu 2
Lời giải
Chọn A
Trong mặt phẳng \(\left( {SBD} \right)\) gọi \(P\) là giao điểm của \(DY\) và \(SB\).
Ta có: \(\left\{ \begin{array}{l}P \in DY\\P \in SB \subset \left( {SAB} \right) \Rightarrow P \in \left( {SAB} \right)\end{array} \right.\). Vậy \(P\) là giao điểm của \(DY\) với \(\left( {SAB} \right)\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.