Câu hỏi:

05/10/2025 282 Lưu

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Các điểm \(M,\,N\)thuộc các cạnh \(AB,\,SC\). Phát biểu nào sau đây đúng?

A. Giao điểm của \(MN\)với \(\left( {SBD} \right)\)là giao điểm của \(MN\)với \(BD\).              
B. Đường thẳng \(MN\)không cắt mặt phẳng \(\left( {SBD} \right)\).              
C. Giao điểm của \(MN\)với \(\left( {SBD} \right)\)là giao điểm của \(MN\)với \(SI\), trong đó \(I\)là giao điểm của \(CM\)với \(BD\). 
D. Giao điểm của \(MN\)với \(\left( {SBD} \right)\)\(M\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Cho hình chóp \(S.ABCD\)có đáy là hình bình hành \(ABCD\). Các điểm \(M,\,N\)thuộc các cạnh \(AB,\,SC\). Phát biểu nào sau đây đúng? (ảnh 1)

Gọi \(I\)là giao điểm của \(CM\)với \(BD\), khi đó \(SI\)và \(MN\)cùng thuộc \(\left( {SCM} \right)\)nên cắt nhau tại \(K\).

Vì \(K \in SI\)nên \(K \in \left( {SBD} \right)\). Vậy \(K\)là giao điểm của \(MN\)với \(\left( {SBD} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Đúng

c) Đúng

d) Sai

 

b) Trong mặt phẳng \((ABC)\), vẽ giao điểm \(E\) của \(MN\)\(AC\).

Ta có \(E \in AC\), suy ra \(E \in (SAC)\).

Vậy \(E\) là giao điểm của đường thẳng \(MN\) và mặt phẳng \((SAC)\).

c) Ta có \(S\)\(E\) là hai điểm chung của hai mặt phẳng \((SMN)\)\((SAC)\).

Cho tứ diện SABC. Gọi \(M\) và \(N\) lần lượt là hai điểm trên hai cạnh \(AB\ (ảnh 1)

Suy ra \((SMN) \cap (SAC) = SE\).

d) Trong mặt phẳng \((ABC)\), vẽ giao điểm \(F\) của \(AN\)\(MC\).

Ta có \(S\)\(F\) là hai điểm chung của hai mặt phẳng \((SAN)\)\((SCM)\).

Suy ra \((SAN) \cap (SCM) = SF\).

Câu 2

A. Ba điểm \(E,\,\,B,\,\,K\) thẳng hàng.             
B. Ba điểm \(F,\,\,K,\,\,I\) thẳng hàng.              
C. Ba điểm \(E,\,\,B,\,\,I\) thẳng hàng.              
D. Ba điểm \(E,\,\,B,\,\,F\) thẳng hàng.

Lời giải

Chọn D

  Ta có: \(\left\{ \begin{array}{l}E \in MK\\MK \subset \left( P \right)\e (ảnh 2)

  Ta có: \(\left\{ \begin{array}{l}E \in MK\\MK \subset \left( P \right)\end{array} \right. \Rightarrow E \in \left( P \right)\).

Chứng minh tương tự ta có:\(F \in \left( P \right),\,\,B \in \left( P \right)\).

Ta có: \(\left\{ \begin{array}{l}E \in AD\\AD \subset \left( {ABCD} \right)\end{array} \right. \Rightarrow E \in \left( {ABCD} \right)\).

Chứng minh tương tự ta có:\(F \in \left( {ABCD} \right),\,\,B \in \left( {ABCD} \right)\).

Nhận thấy các điểm \(E,\,\,B,\,\,F\) là các điểm chung của hai mặt phẳng \(\left( {ABCD} \right)\) và \(\left( P \right)\) nên chúng thẳng hàng.

Câu 3

A. \(SI\) với \(I\) là giao điểm của \(AB\)\(CD\).                                        
B. \(SI\) với \(I\) là giao điểm của \(AC\)\(BD\).              
C. \(Sx\) với \(Sx{\rm{//}}AB\).                                     
D. \(SI\) với \(I\) là giao điểm của \(AD\)\(BC\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\overrightarrow {IA} = - \,2\overrightarrow {IM} \).                      
B. \(\overrightarrow {IA} = - \,3\overrightarrow {IM} \).       
C. \(\overrightarrow {IA} = 2\overrightarrow {IM} \).                    
D. \(IA = 2,5IM\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(P\) là giao điểm của hai đường thẳng \(DY\) với \(SB\).                              
B. \(P\) là giao điểm của hai đường thẳng \(DY\) với \(SA\).              
C. \(P\) là giao điểm của hai đường thẳng \(DY\) với \(AB\).                            
D. \(P\) là giao điểm của hai đường thẳng \(B{\rm{W}}\) với \(SC\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[SD\].                         
B. \[SO\] (\[O\] là tâm hình bình hành \[ABCD\]).             
C. \[SG\] (\[G\] là trung điểm \[AB\]).                            
D. \[SF\](\[F\] là trung điểm \[CD\]).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP