Bạn Huy đổ nước màu vào một chiếc bể cá có các mặt đều làm bằng kính phẳng. Sau một vài hôm nước bay hơi một phần và để lại trên thành bể các vêt màu như trong Hình 4.5.

Huy quan sát thấy rằng, dù bể cá có hình dạng như thế nào, miễn là các mặt đều phẳng, thì vệt màu trên mỗi thành bể đều là các đường thẳng. Hãy giải thích vì sao.
Bạn Huy đổ nước màu vào một chiếc bể cá có các mặt đều làm bằng kính phẳng. Sau một vài hôm nước bay hơi một phần và để lại trên thành bể các vêt màu như trong Hình 4.5.

Huy quan sát thấy rằng, dù bể cá có hình dạng như thế nào, miễn là các mặt đều phẳng, thì vệt màu trên mỗi thành bể đều là các đường thẳng. Hãy giải thích vì sao.
Quảng cáo
Trả lời:
Vệt màu trên mỗi thành bể là giao tuyến của hai mặt phẳng: mặt phẳng tạo bởi thành bể và mặt nước. Do đó vệt màu luôn là đường thẳng.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Đúng |
b) Đúng |
c) Đúng |
d) Sai |
b) Trong mặt phẳng \((ABC)\), vẽ giao điểm \(E\) của \(MN\) và \(AC\).
Ta có \(E \in AC\), suy ra \(E \in (SAC)\).
Vậy \(E\) là giao điểm của đường thẳng \(MN\) và mặt phẳng \((SAC)\).
c) Ta có \(S\) và \(E\) là hai điểm chung của hai mặt phẳng \((SMN)\) và \((SAC)\).

Suy ra \((SMN) \cap (SAC) = SE\).
d) Trong mặt phẳng \((ABC)\), vẽ giao điểm \(F\) của \(AN\) và \(MC\).
Ta có \(S\) và \(F\) là hai điểm chung của hai mặt phẳng \((SAN)\) và \((SCM)\).
Suy ra \((SAN) \cap (SCM) = SF\).
Câu 2
Lời giải
Chọn A
![Chọn A Gọi \[O\] là tâm của hình bình hành \[ABCD\]. Trong mặt phẳng \[\left( {SAC} \right)\], gọi \(I\) là giao điểm của \[AM\]và\[SO\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/3-1759681373.png)
Gọi \[O\] là tâm của hình bình hành \[ABCD\]. Trong mặt phẳng \[\left( {SAC} \right)\], gọi \(I\) là giao điểm của \[AM\]và\[SO\]. Khi đó \(I\) là trọng tâm tam giác \(SAC\). Vậy \(\overrightarrow {IA} = - \,2\overrightarrow {IM} \).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

