Cho tứ diện ABCD. Gọi \(E,F,G\) lần lượt là các điểm thuộc ba cạnh \(AB,AC\), \(BD\) sao cho \(EF\) cắt \(BC\) tại \(I,AD\) cắt \(EG\) tại \(H\). Chứng minh ba đường thẳng \(CD\), \(IG,HF\) cùng đi qua một điểm.
Cho tứ diện ABCD. Gọi \(E,F,G\) lần lượt là các điểm thuộc ba cạnh \(AB,AC\), \(BD\) sao cho \(EF\) cắt \(BC\) tại \(I,AD\) cắt \(EG\) tại \(H\). Chứng minh ba đường thẳng \(CD\), \(IG,HF\) cùng đi qua một điểm.
Quảng cáo
Trả lời:

Gọi \(O = HF \cap IG\). Ta có: \(O \in HF\) mà \(HF \subset (ACD)\)suy ra \(O \in (ACD)\);
\(O \in IG\) mà \(IG \subset (BCD)\) suy ra \(O \in (BCD)\).
Do đó \(O \in (ACD) \cap (BCD)\). (1)
Mặt khác, ta có \((ACD) \cap (BCD) = CD\). (2)
Từ (1) và (2), suy ra \(O \in CD\).
Vậy ba đường thẳng \(CD,IG,HF\) cùng đi qua một điểm.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Đúng |
b) Đúng |
c) Đúng |
d) Sai |
b) Trong mặt phẳng \((ABC)\), vẽ giao điểm \(E\) của \(MN\) và \(AC\).
Ta có \(E \in AC\), suy ra \(E \in (SAC)\).
Vậy \(E\) là giao điểm của đường thẳng \(MN\) và mặt phẳng \((SAC)\).
c) Ta có \(S\) và \(E\) là hai điểm chung của hai mặt phẳng \((SMN)\) và \((SAC)\).

Suy ra \((SMN) \cap (SAC) = SE\).
d) Trong mặt phẳng \((ABC)\), vẽ giao điểm \(F\) của \(AN\) và \(MC\).
Ta có \(S\) và \(F\) là hai điểm chung của hai mặt phẳng \((SAN)\) và \((SCM)\).
Suy ra \((SAN) \cap (SCM) = SF\).
Câu 2
Lời giải
Chọn D

Ta có: \(\left\{ \begin{array}{l}E \in MK\\MK \subset \left( P \right)\end{array} \right. \Rightarrow E \in \left( P \right)\).
Chứng minh tương tự ta có:\(F \in \left( P \right),\,\,B \in \left( P \right)\).
Ta có: \(\left\{ \begin{array}{l}E \in AD\\AD \subset \left( {ABCD} \right)\end{array} \right. \Rightarrow E \in \left( {ABCD} \right)\).
Chứng minh tương tự ta có:\(F \in \left( {ABCD} \right),\,\,B \in \left( {ABCD} \right)\).
Nhận thấy các điểm \(E,\,\,B,\,\,F\) là các điểm chung của hai mặt phẳng \(\left( {ABCD} \right)\) và \(\left( P \right)\) nên chúng thẳng hàng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


