Qua nghiên cứu, người ta nhận thấy rằng với mỗi người trung bình nhiệt độ môi trường giảm đi \[1^\circ {\rm{C}}\]thì lượng calo cần tăng thêm khoảng \[30\] calo. Tại \[21^\circ {\rm{C}}\], một người làm việc cần sử dụng khoảng 3000 calo mỗi ngày. Người ta thấy mối quan hệ giữa hai đại lượng này là một hàm số bậc nhất \[y = ax + b\] (\[x\] là đại lượng biểu thị cho nhiệt độ môi trường và \[y\]là đại lượng biểu thị cho lượng calo). Nếu một người làm việc ở sa mạc Sahara trong nhiệt độ \[50^\circ {\rm{C}}\] thì cần bao nhiêu calo?
Câu hỏi trong đề: Đề kiểm tra Toán 9 Chân trời sáng tạo Chương 1 có đáp án !!
Quảng cáo
Trả lời:
Thay\(x = 21^\circ {\rm{C}}\); \(y = 3000\) calo vào \(y = a.x + b\) nên \(21a + b = 3\,\,000\). (1)
Thay\(x = 20^\circ {\rm{C}}\); \(y = 3030\) calo calo vào \(y = a.x + b\)nên \(20a + b = 3\,\,030\). (2)
Từ (1) và (2) ta có hệ phương trình\(\left\{ \begin{array}{l}21a + b = 3\,\,000\\20a + b = 3\,\,030\end{array} \right.\).
Giải hệ phương trình, ta được \(\left\{ \begin{array}{l}a = - 30\\b = 3630\end{array} \right.\).
Ta có hàm số có dạng \(y = - 30x + 3630\).
Thay \(x = 50^\circ {\rm{C}}\) vào \(y = - 30x + 3630\) suy ra \(y = - 30 \cdot 50 + 3\,\,630 = 2\,\,130\).
Vậy một người làm việc ở sa mạc Sahara trong nhiệt độ \(50^\circ {\rm{C}}\) thì cần 2130 calo.
Đáp án: 2130Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai. Thay \(x = 2\,;\,\,y = 1\) vào phương trình \(2x - y = 4\), ta được \(2 \cdot 2 - 1 = 3 \ne 4\).
Do đó, cặp số \(\left( {2;1} \right)\) không phải là nghiệm của phương trình.
b) Sai. Ta có \(2x - y = 4\), suy ra \(y = 2x - 4\).
c) Đúng. Ta có \(2x - y = 4\) hay \(y = 2x - 4\) nên giá trị của hệ số \(a\) bằng \[2\].
d) Sai. Hệ số \(b = - 4\).
Lời giải
a) Đúng. Điều kiện xác định của hệ phương trình (I) là \(\left\{ \begin{array}{l}y \ne 9\\y \ge 0\end{array} \right.\).
b) Đúng. Đặt \(\frac{1}{{\sqrt y - 3}} = a\). Hệ phương trình (I) trở thành:O10-2024-GV154 O10-2024-GV147 \(\left\{ \begin{array}{l}(x + 2) + 2a = 9\\2(x + 2) - a = 8\end{array} \right.\) (II).
c) Đúng. Nhân hai vế của phương trình thứ hai của hệ (II) với 2, ta được \(\left\{ \begin{array}{l}(x + 2) + 2a = 9\\4(x + 2) - 2a = 16\end{array} \right..\)
Cộng vế theo vế hai phương trình của hệ mới, ta được: \(5\left( {x + 2} \right) = 25\), suy ra \(x + 2 = 5\) nên \(x = 3.\)
Thế vào phương trình thứ nhất của hệ mới, ta có: \(\left( {3 + 2} \right) + 2a = 9\) nên \(a = 2.\)
d) Sai. Khi đó \(\frac{1}{{\sqrt y - 3}} = 2\) hay \(\sqrt y - 3 = \frac{1}{2}\) nên \(\sqrt y - 3 = \frac{1}{2}\), suy ra \(y = \frac{{49}}{4}.\)
Vậy hệ phương trình (I) có nghiệm duy nhất \(\left( {x\,;\,\,y} \right) = \left( {3\,;\,\,\frac{{49}}{4}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.