Câu hỏi:

09/10/2025 36 Lưu

Cho hệ phương trình \(\left\{ \begin{array}{l}x + 2 + \frac{2}{{\sqrt y  - 3}} = 9\\2x + 4 - \frac{1}{{\sqrt y  - 3}} = 8\end{array} \right.\) (I)

a) Điều kiện xác định của hệ phương trình (I) là \(\left\{ \begin{array}{l}y \ne 9\\y \ge 0\end{array} \right.\).

b) Đặt \(\frac{1}{{\sqrt y  - 3}} = a\). Hệ phương trình (I) trở thành: O10-2024-GV154 O10-2024-GV147 \(\left\{ \begin{array}{l}(x + 2) + 2a = 9\\2(x + 2) - a = 8\end{array} \right.\) (II)

c) Giải hệ phương trình (II) ta được \(x = 3\,;\,\,a = 2.\)

d) Hệ phương trình (I) có nghiệm duy nhất \(\left( {x\,;\,\,y} \right) = \left( {3\,;\,\,\frac{7}{2}} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Điều kiện xác định của hệ phương trình (I) là \(\left\{ \begin{array}{l}y \ne 9\\y \ge 0\end{array} \right.\).

b) Đúng. Đặt \(\frac{1}{{\sqrt y  - 3}} = a\). Hệ phương trình (I) trở thành:O10-2024-GV154 O10-2024-GV147 \(\left\{ \begin{array}{l}(x + 2) + 2a = 9\\2(x + 2) - a = 8\end{array} \right.\) (II).

c) Đúng. Nhân hai vế của phương trình thứ hai của hệ (II) với 2, ta được \(\left\{ \begin{array}{l}(x + 2) + 2a = 9\\4(x + 2) - 2a = 16\end{array} \right..\)

Cộng vế theo vế hai phương trình của hệ mới, ta được: \(5\left( {x + 2} \right) = 25\), suy ra \(x + 2 = 5\) nên \(x = 3.\)

Thế vào phương trình thứ nhất của hệ mới, ta có: \(\left( {3 + 2} \right) + 2a = 9\) nên \(a = 2.\)

d) Sai. Khi đó \(\frac{1}{{\sqrt y  - 3}} = 2\) hay \(\sqrt y  - 3 = \frac{1}{2}\) nên \(\sqrt y  - 3 = \frac{1}{2}\), suy ra \(y = \frac{{49}}{4}.\)

Vậy hệ phương trình (I) có nghiệm duy nhất \(\left( {x\,;\,\,y} \right) = \left( {3\,;\,\,\frac{{49}}{4}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Thay \(x = 2\,;\,\,y = 1\) vào phương trình \(2x - y = 4\), ta được \(2 \cdot 2 - 1 = 3 \ne 4\).

Do đó, cặp số \(\left( {2;1} \right)\) không phải là nghiệm của phương trình.

b) Sai. Ta có \(2x - y = 4\), suy ra \(y = 2x - 4\).

c) Đúng. Ta có \(2x - y = 4\) hay \(y = 2x - 4\) nên giá trị của hệ số \(a\) bằng \[2\].

d) Sai. Hệ số \(b =  - 4\).

Lời giải

Theo đề bài, hệ phương trình có hai nghiệm \(\left( {x\,;\,\,y} \right)\) trong đó có \(1\) nghiệm là \(\left( {2\,;\,\,4} \right)\).

Suy ra, nghiệm còn lại là \(\left( {4\,;\,\,2} \right)\).

Vì \(x > y\) nên \(x = 4;y = 2\). Vậy \(3x + 2y = 3.4 + 2.2 = 16\)

Đáp án: 16.

Câu 5

A. \(\left( {1\,;\,\, - 2} \right)\). 
B. \(\left( { - 2\,;\,\, - 0,5} \right)\). 
C. \(\left( {3\,;\,\,3} \right)\). 
D. \(\left( { - 5\,;\,\,1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP