Dạng 2. Trắc nghiệm đúng sai
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho phương trình \[9{x^2} - 1 - 2x\left( {3x - 1} \right) = 0\], khi đó
a) Phương trình có một nghiệm nguyên.
b) Phương trình có hai nghiệm là \[x = 1\,;\,\,\,x = \frac{1}{3}\].
c) Tổng hai nghiệm của phương trình là \(\frac{{ - 2}}{3}\).
d) Tích hai nghiệm của phương trình là \(\frac{2}{3}\).
Dạng 2. Trắc nghiệm đúng sai
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho phương trình \[9{x^2} - 1 - 2x\left( {3x - 1} \right) = 0\], khi đó
a) Phương trình có một nghiệm nguyên.
b) Phương trình có hai nghiệm là \[x = 1\,;\,\,\,x = \frac{1}{3}\].
c) Tổng hai nghiệm của phương trình là \(\frac{{ - 2}}{3}\).
d) Tích hai nghiệm của phương trình là \(\frac{2}{3}\).
Quảng cáo
Trả lời:

Ta có \[9{x^2} - 1 - 2x\left( {3x - 1} \right) = 0\]
\[\left( {3x + 1} \right)\left( {3x - 1} \right) - 2x\left( {3x - 1} \right) = 0\]
\[\left( {3x - 1} \right)\left( {3x + 1 - 2x} \right) = 0\]
\[\left( {3x - 1} \right)\left( {x + 1} \right) = 0\]
\[3x - 1 = 0\] hoặc \[x + 1 = 0\]
\[x = \frac{1}{3}\] hoặc \[x = - 1\].
a) Đúng. Phương trình có một nghiệm nguyên là \[x = - 1\].
b) Sai. Phương trình có hai nghiệm là \[x = - 1\,;\,\,\,x = \frac{1}{3}\].
c) Đúng. Tổng hai nghiệm của phương trình là \( - 1 + \frac{1}{3} = \frac{{ - 2}}{3}\).
d) Sai. Tích hai nghiệm của phương trình là \( - 1 \cdot \frac{1}{3} = \frac{{ - 2}}{3}\).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giải hệ phương trình \(\left\{ \begin{array}{l}x - y = 1\\3x - 2y = 0\end{array} \right.\)ta được \(\left\{ \begin{array}{l}x = - 2\\y = - 3\end{array} \right.\) .
Vậy \({x^2} + 2xy + {y^2} = {\left( {x + y} \right)^2} = {\left( { - 2 - 3} \right)^2} = 25\).
Đáp án: 25.
Câu 2
A. \(\left\{ \begin{array}{l}x + y = 3,5\\130x + 50y = 295\end{array} \right.\).
B. \(\left\{ \begin{array}{l}x - y = 3,5\\130x + y = 295\end{array} \right.\).
Lời giải
Chọn A
Gọi \(x\) và \(y\) lần lượt là số kilogam thịt lợn và cá chép mà bác Ngọc đã mua.
Do bác Ngọc chỉ mua \(3,5\,\,{\rm{kg}}\) hai loại thực phẩm trên.
Ta có phương trình: \(x + y = 3,5\).
Giá tiền thịt lợn là \(130\) nghìn đồng/kg, giá tiền cá chép là \(50\) nghìn đồng/kg.
Bác Ngọc đã chi \(295\) nghìn để mua \(3,5\,\,{\rm{kg}}\) hai loại thực phẩm trên.
Ta có phương trình: \(130x + 50y = 295\).
Vậy ta có hệ phương trình \(\left\{ \begin{array}{l}x + y = 3,5\\130x + 50y = 295\end{array} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[x = - 7.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.