Câu hỏi:

09/10/2025 50 Lưu

Ba xe ô tô chở 118 tấn hàng tổng cộng hết 50 chuyến. Số chuyến xe thứ nhất chở gấp rưỡi số chuyến xe thứ hai. Mỗi chuyến xe thứ nhất chở 2 tấn, xe thứ hai chở 2,5 tấn, xe thứ ba chở 3 tấn.

a) Ô tô thứ nhất chở ít chuyến hơn ô tô thứ hai.

b) Mỗi chuyến, ô tô thứ hai chở được ít hàng nhất.

c) Tổng số hàng (tấn) ô tô thứ ba chở bằng \(\frac{5}{8}\) tổng số hàng ô tô thứ nhất chở.

d) Nếu ô tô thứ ba chở hộ số hàng (tấn) mà ô tô thứ hai chở trong 2 chuyến thì số hàng hai ô tô chở được bằng nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \[x,{\rm{ }}y\] lần lượt là số chuyến của xe thứ hai, thứ ba \[\left( {x,\,\,y \in \mathbb{N}*;\,\,x,{\rm{ }}y < 500} \right)\].

a) Sai. Số chuyến xe thứ nhất chở gấp rưỡi số chuyến xe thứ hai nên ô tô thứ nhất chở được nhiều chuyến hơn ô tô thứ hai.

b) Đúng. Mỗi chuyến xe thứ nhất chở 2 tấn, xe thứ hai chở 2,5 tấn, xe thứ ba chở 3 tấn.

Do đó, mỗi chuyến ô tô thứ nhất chở được ít hàng nhất.

c) Sai. Số chuyến xe thứ nhất chở được là \[1,5x\] (chuyến).

Ba xe ô tô chở tổng cộng 50 chuyến nên \[x + 1,5x + y = 50\] hay \[2,5x + y = 50\].            (1)

Mỗi chuyến xe thứ nhất chở 2 tấn, xe thứ 2 chở 2,5 tấn, xe thứ 3 chở 3 tấn mà ba xe chở tổng cộng 118 tấn hàng nên \[2 \cdot 1,5x + 2,5x + 3y = 118\] hay \[5,5x + 3y = 118.\]  (2)

Từ (1) và (2) ta có hệ phương trình: \[\left\{ \begin{array}{l}2,5x + y = 50\\5,5x + 3y = 118\end{array} \right.\].

Giải hệ phương trình ta được \[\left\{ \begin{array}{l}x = 16\\y = 10\end{array} \right.\].

Khi đó, số chuyến xe thứ nhất chở được là \[1,5 \cdot 16 = 24\] (chuyến).

Số chuyến xe thứ ba chở được là 10 chuyến.

Vậy tổng số hàng (tấn) ô tô thứ ba chở bằng \(\frac{{10}}{{24}} = \frac{5}{{12}}\) tổng số hàng ô tô thứ nhất chở.

d) Sai. Nếu ô tô thứ ba chở hộ số hàng (tấn) mà ô tô thứ hai chở trong 2 chuyến. Khi đó

Số hàng ô tô thứ ba chở được là: \[10 + 2 \cdot 2,5 = 15\] (tấn).

Số hàng ô tô thứ hai chở được là: \[16 - 2 \cdot 2,5 = 11\] (tấn).

Vậy nếu ô tô thứ ba chở hộ số hàng (tấn) mà ô tô thứ hai chở trong 2 chuyến thì số hàng ô tô thứ ba chở được nhiều hơn ô tô thứ hai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Phương trình \(x - y = m + 1\) là phương trình bậc nhất hai ẩn với \(a = 1\,;\,\,b =  - 1\,;\,\,c = m + 1\)(\(m\) là tham số).

b) Sai. Với \(m = 2\) ta có hệ phương trình \(\left\{ \begin{array}{l}x - y = 3\\2x + y = 12\end{array} \right.\).

Cộng vế theo vế của hai phương trình của hệ mới, ta được \(3x = 15\) nên \(x = 5\).

Từ đó \(5 - y = 3\) nên \(y = 2\).

Vậy nghiệm của hệ phương trình khi \(m = 2\) là \((x\,;\,\,y) = \left( {5\,;\,\,2} \right).\)

c) Đúng. Cộng vế theo vế của hai phương trình của hệ đã cho, ta được \(3x = 6m + 3\) nên \(x = 2m + 1.\)

Từ đó \(2m + 1 - y = m + 1\) nên \(y = \left( {2m + 1} \right) - \left( {m + 1} \right) = m.\)

d) Đúng. Để hệ phương trình có nghiệm thỏa mãn \(x > 1\,;\,\,y < 2\) thì

\(\left\{ \begin{array}{l}2m + 1 > 1\\m < 2\end{array} \right.\) nên \(\left\{ \begin{array}{l}m > 0\\m < 2\end{array} \right.\) hay \(0 < m < 2\).

Lời giải

a) Sai. Thay \(x = 2\,;\,\,y = 5\) vào phương trình \(2x + 5y = 7\), ta được \(2 \cdot 2 + 5 \cdot 5 = 29 \ne 7\).

Do đó, cặp số \(\left( {2;5} \right)\) không phải là nghiệm của phương trình.

b) Đúng. Ta có \(2x + 5y = 7\), suy ra \(2x = 7 - 5y\).

c) Đúng. Ta có \(2x + 5y = 7\) suy ra \(y = \frac{{ - 2}}{5}x + \frac{7}{5} =  - 0,4x + 1,4\).

Do đó \(a - b =  - 0,4 - 1,4 =  - 1,8\).

d) Sai. Ta có \(ab =  - 0,4 \cdot 1,4 =  - 0,56\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP