Trong một kì thi, hai trường A, B có tổng cộng 350 học sinh dự thi. Kết quả hai trường đó có 338 học sinh trúng tuyển. Tính ra thì trường A có 97% và trường B có 96% số học sinh trúng tuyển. Hỏi trường B có bao nhiêu học sinh dự thi.
a) Tỉ lệ trúng tuyển của trường A cao hơn trường B.
b) Số học không trúng tuyển của hai trường là 12 học sinh.
c) Phương trình thể hiện số học sinh trúng tuyển của hai trường đạt là \[97x + 96y = 338.\]
d) Trường A có 150 thí sinh dự thi.
Trong một kì thi, hai trường A, B có tổng cộng 350 học sinh dự thi. Kết quả hai trường đó có 338 học sinh trúng tuyển. Tính ra thì trường A có 97% và trường B có 96% số học sinh trúng tuyển. Hỏi trường B có bao nhiêu học sinh dự thi.
a) Tỉ lệ trúng tuyển của trường A cao hơn trường B.
b) Số học không trúng tuyển của hai trường là 12 học sinh.
c) Phương trình thể hiện số học sinh trúng tuyển của hai trường đạt là \[97x + 96y = 338.\]
d) Trường A có 150 thí sinh dự thi.
Quảng cáo
Trả lời:

Gọi số học sinh dự thi của hai trường A, B lần lượt là \[x,{\rm{ }}y{\rm{ }}\left( {0 < x,{\rm{ }}y < 350} \right)\] (học sinh).
a) Đúng. Vì trường A có 97% và trường B có 96% số học sinh trúng tuyển nên tỉ lệ trúng tuyển của trường A cao hơn trường B.
b) Đúng. Theo đề bài, hai trường A, B có tổng cộng 350 học sinh dự thi và có 338 học sinh trúng tuyển.
Do đó, số học không trúng tuyển của hai trường là: \[350 - 338 = 12\] (học sinh).
c) Sai. Vì trường A có 97% và trường B có 96% số học sinh trúng tuyển và cả hai trường đó có 338 học sinh trúng tuyển nên ta có phương trình \[97\% x + 96\% y = 338.\]
d) Sai. Vì hai trường A, B có tổng cộng 350 học sinh dự thi nên ta có phương trình
\[x + y = 350\] (học sinh).
Từ đó, ta có hệ phương trình: \(\left\{ \begin{array}{l}x + y = 350\\97\% x + 96\% y = 338\end{array} \right.\).
Nhân hai vế của phương trình thứ hai với 100, ta được hệ \(\left\{ \begin{array}{l}x + y = 350\\97x + 96y = 33\,\,800\end{array} \right.\).
Từ phương trình thứ nhất của hệ mới, ta có: \[y = 350 - x.\] Thế vào phương trình thứ hai của hệ, ta được: \[97x + 96\left( {350 - x} \right) = 33\,\,800\] hay \[97x + 33\,\,600 - 96x = 33\,\,800\] nên \[x = 200.\]
Từ đó \[y = 350 - 200 = 150.\]
Vậy trường A có 200 thí sinh dự thi.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giải hệ phương trình \(\left\{ \begin{array}{l}x - y = 1\\3x - 2y = 0\end{array} \right.\)ta được \(\left\{ \begin{array}{l}x = - 2\\y = - 3\end{array} \right.\) .
Vậy \({x^2} + 2xy + {y^2} = {\left( {x + y} \right)^2} = {\left( { - 2 - 3} \right)^2} = 25\).
Đáp án: 25.
Câu 2
A. \(\left\{ \begin{array}{l}x + y = 3,5\\130x + 50y = 295\end{array} \right.\).
B. \(\left\{ \begin{array}{l}x - y = 3,5\\130x + y = 295\end{array} \right.\).
Lời giải
Chọn A
Gọi \(x\) và \(y\) lần lượt là số kilogam thịt lợn và cá chép mà bác Ngọc đã mua.
Do bác Ngọc chỉ mua \(3,5\,\,{\rm{kg}}\) hai loại thực phẩm trên.
Ta có phương trình: \(x + y = 3,5\).
Giá tiền thịt lợn là \(130\) nghìn đồng/kg, giá tiền cá chép là \(50\) nghìn đồng/kg.
Bác Ngọc đã chi \(295\) nghìn để mua \(3,5\,\,{\rm{kg}}\) hai loại thực phẩm trên.
Ta có phương trình: \(130x + 50y = 295\).
Vậy ta có hệ phương trình \(\left\{ \begin{array}{l}x + y = 3,5\\130x + 50y = 295\end{array} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[x = - 7.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.