Câu hỏi:

09/10/2025 39 Lưu

Cho hai biểu thức \[A = \frac{3}{{3x + 1}} + \frac{2}{{1 - 3x}}\] và \[B = \frac{{x - 5}}{{9{x^2} - 1}}.\] Có bao nhiêu giá trị nào của \[x\] để hai biểu thức \[A\] và \[B\] có cùng một giá trị?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Theo đề, ta có \[A = B\].

Tức là, \[\frac{3}{{3x + 1}} + \frac{2}{{1 - 3x}} = \frac{{x - 5}}{{9{x^2} - 1}}\].    (1)

Điều kiện xác định: \[x \ne \frac{1}{3}\] và \[x \ne  - \frac{1}{3}.\]

Từ (1), ta có: \[\frac{3}{{3x + 1}} - \frac{2}{{3x - 1}} = \frac{{x - 5}}{{\left( {3x + 1} \right)\left( {3x - 1} \right)}}\]

\[\frac{{3\left( {3x - 1} \right)}}{{\left( {3x + 1} \right)\left( {3x - 1} \right)}} - \frac{{2\left( {3x + 1} \right)}}{{\left( {3x - 1} \right)\left( {3x + 1} \right)}} = \frac{{x - 5}}{{\left( {3x + 1} \right)\left( {3x - 1} \right)}}\]

\[3\left( {3x - 1} \right) - 2\left( {3x + 1} \right) = x - 5\] \[A = B.\]

\[9x - 3 - 6x - 2 = x - 5\]

\[2x = 0\]

\[x = 0\] (TMĐK).

Do đó, khi \[x = 0\] thì

Vậy có 1 giá trị nào của \[x\] để hai biểu thức \[A\] và \[B\] có cùng một giá trị.

Đáp án: 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Phương trình \(x - y = m + 1\) là phương trình bậc nhất hai ẩn với \(a = 1\,;\,\,b =  - 1\,;\,\,c = m + 1\)(\(m\) là tham số).

b) Sai. Với \(m = 2\) ta có hệ phương trình \(\left\{ \begin{array}{l}x - y = 3\\2x + y = 12\end{array} \right.\).

Cộng vế theo vế của hai phương trình của hệ mới, ta được \(3x = 15\) nên \(x = 5\).

Từ đó \(5 - y = 3\) nên \(y = 2\).

Vậy nghiệm của hệ phương trình khi \(m = 2\) là \((x\,;\,\,y) = \left( {5\,;\,\,2} \right).\)

c) Đúng. Cộng vế theo vế của hai phương trình của hệ đã cho, ta được \(3x = 6m + 3\) nên \(x = 2m + 1.\)

Từ đó \(2m + 1 - y = m + 1\) nên \(y = \left( {2m + 1} \right) - \left( {m + 1} \right) = m.\)

d) Đúng. Để hệ phương trình có nghiệm thỏa mãn \(x > 1\,;\,\,y < 2\) thì

\(\left\{ \begin{array}{l}2m + 1 > 1\\m < 2\end{array} \right.\) nên \(\left\{ \begin{array}{l}m > 0\\m < 2\end{array} \right.\) hay \(0 < m < 2\).

Lời giải

a) Sai. Thay \(x = 2\,;\,\,y = 5\) vào phương trình \(2x + 5y = 7\), ta được \(2 \cdot 2 + 5 \cdot 5 = 29 \ne 7\).

Do đó, cặp số \(\left( {2;5} \right)\) không phải là nghiệm của phương trình.

b) Đúng. Ta có \(2x + 5y = 7\), suy ra \(2x = 7 - 5y\).

c) Đúng. Ta có \(2x + 5y = 7\) suy ra \(y = \frac{{ - 2}}{5}x + \frac{7}{5} =  - 0,4x + 1,4\).

Do đó \(a - b =  - 0,4 - 1,4 =  - 1,8\).

d) Sai. Ta có \(ab =  - 0,4 \cdot 1,4 =  - 0,56\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP