Một doanh nghiệp sử dụng than để sản xuất. Doanh nghiệp đó lập kế hoạch tài chính cho viẹc loại bỏ chất ô nhiễm trong khí thải theo dự kiến sau: Để loại bỏ \(p\% \) chất ô nhiễm trong khí thải thì chi phí \(C\) (triệu đồng) được tính theo công thức \(C = \frac{{80}}{{100 - p}}\), với \(0 \le p < 100\). Với chi phí là 420 triệu đồng thì doanh nghiệp loại bỏ được bao nhiêu phầm trăm chất gây ô nhiễm trong khí thải (làm tròn kết quả đến hàng phần mười).
Một doanh nghiệp sử dụng than để sản xuất. Doanh nghiệp đó lập kế hoạch tài chính cho viẹc loại bỏ chất ô nhiễm trong khí thải theo dự kiến sau: Để loại bỏ \(p\% \) chất ô nhiễm trong khí thải thì chi phí \(C\) (triệu đồng) được tính theo công thức \(C = \frac{{80}}{{100 - p}}\), với \(0 \le p < 100\). Với chi phí là 420 triệu đồng thì doanh nghiệp loại bỏ được bao nhiêu phầm trăm chất gây ô nhiễm trong khí thải (làm tròn kết quả đến hàng phần mười).
Quảng cáo
Trả lời:
Theo đề bài ta có phương trình
\(420 = \frac{{80}}{{100 - p}}\)
\(\frac{{420(100 - p)}}{{100 - p}} = \frac{{80}}{{100 - p}}\)
\(420(100 - p) = 80\)
\(42000 - 420p = 80\)
\(420p = 41\,\,920\)
\(p \approx 99,8\) (thỏa mãn \(0 \le p < 100\))
Vậy với \(420\) triệu đồng thì doanh nghiệp loại bỏ được \(99,8\% \) chất gây ô nhiễm môi trường.
Đáp án: 99,8.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Phương trình \(x - y = m + 1\) là phương trình bậc nhất hai ẩn với \(a = 1\,;\,\,b = - 1\,;\,\,c = m + 1\)(\(m\) là tham số).
b) Sai. Với \(m = 2\) ta có hệ phương trình \(\left\{ \begin{array}{l}x - y = 3\\2x + y = 12\end{array} \right.\).
Cộng vế theo vế của hai phương trình của hệ mới, ta được \(3x = 15\) nên \(x = 5\).
Từ đó \(5 - y = 3\) nên \(y = 2\).
Vậy nghiệm của hệ phương trình khi \(m = 2\) là \((x\,;\,\,y) = \left( {5\,;\,\,2} \right).\)
c) Đúng. Cộng vế theo vế của hai phương trình của hệ đã cho, ta được \(3x = 6m + 3\) nên \(x = 2m + 1.\)
Từ đó \(2m + 1 - y = m + 1\) nên \(y = \left( {2m + 1} \right) - \left( {m + 1} \right) = m.\)
d) Đúng. Để hệ phương trình có nghiệm thỏa mãn \(x > 1\,;\,\,y < 2\) thì
\(\left\{ \begin{array}{l}2m + 1 > 1\\m < 2\end{array} \right.\) nên \(\left\{ \begin{array}{l}m > 0\\m < 2\end{array} \right.\) hay \(0 < m < 2\).Lời giải
a) Sai. Thay \(x = 2\,;\,\,y = 5\) vào phương trình \(2x + 5y = 7\), ta được \(2 \cdot 2 + 5 \cdot 5 = 29 \ne 7\).
Do đó, cặp số \(\left( {2;5} \right)\) không phải là nghiệm của phương trình.
b) Đúng. Ta có \(2x + 5y = 7\), suy ra \(2x = 7 - 5y\).
c) Đúng. Ta có \(2x + 5y = 7\) suy ra \(y = \frac{{ - 2}}{5}x + \frac{7}{5} = - 0,4x + 1,4\).
Do đó \(a - b = - 0,4 - 1,4 = - 1,8\).
d) Sai. Ta có \(ab = - 0,4 \cdot 1,4 = - 0,56\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
