Câu hỏi:

09/10/2025 45 Lưu

Tìm nghiệm nguyên âm lớn nhất của phương trình \( - 5x + 2y = 7\). Kết quả là \(x = a\,;\,\,y = b\). Tính \[a + b.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \( - 5x + 2y = 7\) hay \(2y = 5x + 7\).

Khi đó \(y = \frac{{5x + 7}}{2} = 2x + \frac{{x + 7}}{2}.\)

Đặt \(t = \frac{{x + 7}}{2}\) nên \(x = 2t - 7\).

Suy ra \(y = 2\left( {2t - 7} \right) + t\) nên \(y = 5t - 14\,\,\left( {t \in \mathbb{Z}} \right)\).

Nên nghiệm nguyên của phương trình là \(\left\{ {\begin{array}{*{20}{c}}{x = 2t - 7}\\{y = 5t - 14}\end{array}} \right.\)\(\left( {t \in \mathbb{Z}} \right)\).

Vì \[x,{\rm{ }}y\] nguyên âm nên \(\left\{ {\begin{array}{*{20}{c}}{2t - 7 < 0}\\{5t - 14 < 0}\end{array}} \right.\)O10-2024-GV154O10-2024-GV147 nên \(\left\{ {\begin{array}{*{20}{c}}{t < \frac{7}{2}}\\{t < \frac{{14}}{5}}\end{array}} \right.\) suy ra \(t\)\( < \frac{{14}}{5}\).

Vì nghiệm nguyên âm lớn nhất, mà \[t\] nguyên nên \(t = 2\)

Vậy \(x =  - 3\,;\,\,y =  - 4.\)

Đáp án: −7.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Phương trình \(x - y = m + 1\) là phương trình bậc nhất hai ẩn với \(a = 1\,;\,\,b =  - 1\,;\,\,c = m + 1\)(\(m\) là tham số).

b) Sai. Với \(m = 2\) ta có hệ phương trình \(\left\{ \begin{array}{l}x - y = 3\\2x + y = 12\end{array} \right.\).

Cộng vế theo vế của hai phương trình của hệ mới, ta được \(3x = 15\) nên \(x = 5\).

Từ đó \(5 - y = 3\) nên \(y = 2\).

Vậy nghiệm của hệ phương trình khi \(m = 2\) là \((x\,;\,\,y) = \left( {5\,;\,\,2} \right).\)

c) Đúng. Cộng vế theo vế của hai phương trình của hệ đã cho, ta được \(3x = 6m + 3\) nên \(x = 2m + 1.\)

Từ đó \(2m + 1 - y = m + 1\) nên \(y = \left( {2m + 1} \right) - \left( {m + 1} \right) = m.\)

d) Đúng. Để hệ phương trình có nghiệm thỏa mãn \(x > 1\,;\,\,y < 2\) thì

\(\left\{ \begin{array}{l}2m + 1 > 1\\m < 2\end{array} \right.\) nên \(\left\{ \begin{array}{l}m > 0\\m < 2\end{array} \right.\) hay \(0 < m < 2\).

Lời giải

a) Sai. Thay \(x = 2\,;\,\,y = 5\) vào phương trình \(2x + 5y = 7\), ta được \(2 \cdot 2 + 5 \cdot 5 = 29 \ne 7\).

Do đó, cặp số \(\left( {2;5} \right)\) không phải là nghiệm của phương trình.

b) Đúng. Ta có \(2x + 5y = 7\), suy ra \(2x = 7 - 5y\).

c) Đúng. Ta có \(2x + 5y = 7\) suy ra \(y = \frac{{ - 2}}{5}x + \frac{7}{5} =  - 0,4x + 1,4\).

Do đó \(a - b =  - 0,4 - 1,4 =  - 1,8\).

d) Sai. Ta có \(ab =  - 0,4 \cdot 1,4 =  - 0,56\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP