Câu hỏi:

11/10/2025 61 Lưu

Cho hai tam giác \(\Delta ABC\)\(\Delta A'B'C'\) có trọng tâm lần lượt là G\(G'\). Đẳng thức nào sau đây đúng?

A. \(\overrightarrow {A'A} + \overrightarrow {B'B} + \overrightarrow {C'C} = 3\overrightarrow {GG'} \)                                     
B. \(\overrightarrow {AB'} + \overrightarrow {BC'} + \overrightarrow {CA'} = 3\overrightarrow {GG'} \)
C. \(\overrightarrow {AC'} + \overrightarrow {BA'} + \overrightarrow {CB'} = 3\overrightarrow {GG'} \)                                     
D. \(\overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'} = 3\overrightarrow {GG'} \)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

\[\overrightarrow {AA'}  + \overrightarrow {BB'}  + \overrightarrow {CC'}  = {\rm{ }}\overrightarrow {AG}  + \overrightarrow {GG'}  + \overrightarrow {G'A'}  + \overrightarrow {BG}  + \overrightarrow {GG'}  + \overrightarrow {G'B'}  + \overrightarrow {CG}  + \overrightarrow {GG'}  + \overrightarrow {G'C'}  = 3\overrightarrow {GG'} \]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho \(\Delta ABC\) vuông tại \(B\) có \(\hat A = {30^^\circ },AB = a\). Gọi \(I\) là trung điểm của \(AC\). Hãy tính: \(|\overrightarrow {AB}  + \overrightarrow {AC} |\). (ảnh 1)

Xét \(\Delta ABC\) vuông tại B:tanA=BCABBC=ABtanA=atan30°=a33

Gọi \(M\) là trung điểm của \(BC\), ta có:

\(|\overrightarrow {AB}  + \overrightarrow {AC} | = |2\overrightarrow {AM} | = 2|\overrightarrow {AM} | = 2AM = 2\sqrt {A{B^2} + B{M^2}} \)

\( = 2\sqrt {{a^2} + {{\left( {\frac{{a\sqrt 3 }}{6}} \right)}^2}}  = \frac{{a\sqrt {39} }}{3}.\)

Lời giải

Cho \(\Delta ABC\) vuông tại \(B\) có \(\hat A = {30^^\circ },AB = a\). Gọi \(I\) là trung điểm của \(AC\). Hãy tính:\(|\overrightarrow {BA}  + \overrightarrow {BC} |\) (ảnh 1)

Xét \(\Delta ABC\) vuông tại B:tanA=BCABBC=ABtanA=atan30°=a33

Ta có: \(|\overrightarrow {BA}  + \overrightarrow {BC} | = |2\overrightarrow {BI} | = 2|\overrightarrow {BI} | = 2BI = 2 \cdot \frac{{AC}}{2} = AC = \frac{{2a\sqrt 3 }}{3}\).

Câu 7

A. \(\overrightarrow {AI} + \overrightarrow {AK} = 2\overrightarrow {AC} \)                              
B. \(\overrightarrow {AI} + \overrightarrow {AK} = \overrightarrow {AB} + \overrightarrow {AD} \)
C. \(\overrightarrow {AI} + \overrightarrow {AK} = \overrightarrow {IK} \)                                  
D. \(\overrightarrow {AI} + \overrightarrow {AK} = \frac{3}{2}\overrightarrow {AC} \)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP