Câu hỏi:

13/10/2025 29 Lưu

Một kì thi Tiếng Anh gồm bốn kĩ năng: nghe, nói, đọc, viết. Kết quả bài thi là điểm số trung bình của bốn kĩ năng này. Bạn Hà đã đạt được điểm số của ba kĩ năng nghe, đọc, viết lần lượt là \[6,5;\,\,6,5;\,\,5,5.\] Hỏi bạn Hà cần đạt được ít nhất bao nhiêu điểm trong kĩ năng nói để kết quả bài thi đạt được ít nhất là \[6,25?\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \[x\] (điểm) là điểm kĩ năng nói trong bài thi Tiếng Anh của bạn Hà \[\left( {x > 0} \right)\].

Điểm trung bình của bốn kĩ năng nghe, nói, đọc, viết là:

\[\frac{{6,5 + x + 6,5 + 5,5}}{4} = \frac{{18,5 + x}}{4}\] (điểm).

Vì kết quả bài thi đạt ít nhất là \[6,25\] nên ta có bất phương trình \[\frac{{18,5 + x}}{4} \ge 6,25\]

Giải bất phương trình:

\[\frac{{18,5 + x}}{4} \ge 6,25\]

\[18,5 + x \ge 25\]

\[x \ge 6,5\] (so với điều kiện \[x > 0,\] ta nhận \[x \ge 6,5\]).

Vậy bạn Hà cần đạt được ít nhất \[6,5\] điểm trong kĩ năng nói để kết quả bài thi đạt được ít nhất là \[6,25.\]

Đáp án: 6,5.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Điều kiện xác định: \(x \ne  - 2\)\(1 + \frac{1}{{2 + x}} = \frac{{12}}{{{x^3} + 8}}\)

Giải phương trình:

\(1 + \frac{1}{{2 + x}} = \frac{{12}}{{{x^3} + 8}}\)

\(\frac{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}}{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}} + \frac{{{x^2} - 2x + 4}}{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}} = \frac{{12}}{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}}\)

\(\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right) + {x^2} - 2x + 4 = 12\)

\({x^3} + 8 + {x^2} - 2x + 4 = 12\)

\({x^3} + {x^2} - 2x = 0\)

\(x\left( {{x^2} + x - 2} \right) = 0\)

\(x\left( {{x^2} - x + 2x - 2} \right) = 0\)

\(x\left[ {x\left( {x - 1} \right) + 2\left( {x - 1} \right)} \right] = 0\)

\(x\left( {x - 1} \right)\left( {x + 2} \right) = 0\)

\(x = 0\) hoặc \(x - 1 = 0\) hoặc \(x + 2 = 0\)

\(x = 0\) (thỏa mãn) hoặc \(x = 1\) (thỏa mãn) hoặc \(x =  - 2\) (không thỏa mãn).

a) Đúng. Điều kiện xác định của phương trình đã cho là \(x \ne  - 2\).

b) Sai. Khi quy đồng mẫu, mẫu thức chung của hai vế phương trình đã cho là \(\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right).\)

c) Sai. Phương trình đã cho có hai nghiệm là \(x = 0;\,\,x = 1.\)

d) Sai. Hai nghiệm này có giá trị không phải nguyên dương là \(x = 0\).

Lời giải

Ta có \[{\left( {x + 2} \right)^2}\; < x + {x^2}\;--3\]

\[{x^2} + 4x + 4\; < x + {x^2}\;--3\]

\[\left( {{x^2} - {x^2}} \right) + \left( {4x - x} \right) <  - 4 - 3\]

\[3x <  - 7\]

\[x <  - \frac{7}{3}\]

Do đó, nghiệm của bất phương trình là \[x <  - \frac{7}{3}.\]

Vậy giá trị nguyên lớn nhất của \(x\) thỏa mãn bất phương trình đã cho là \(x =  - 3.\)

Đáp án: −3.

Câu 4

A. \[3x + \frac{1}{y} > 0.\]  
B. \[y \ge 8x - 1.\]  
C. \[t + 6 \ge 0.\]  
D. \[0x + 10 < 0.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[x >  - 9.\]  
B. \[x <  - 9.\]   
C. \[x >  - \frac{9}{2}.\] 
D. \[x <  - \frac{9}{2}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[S = \left\{ { - 5;\,\,3} \right\}.\] 
B. \[S = \left\{ {5\,;\,\, - 3} \right\}.\]  
C. \[S = \left\{ { - 5\,;\,\, - 3} \right\}.\]  
D. \[S = \left\{ {5\,;\,\,3} \right\}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{{2x}}{3} - 4 = 0\). 
B. \(\frac{{x + 1}}{{2x}} + 3 = 0\). 
C. \[\frac{{x + 1}}{2} = \frac{{x + 3}}{4}\].  
D. \(\frac{{x - 1}}{2} = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP