Câu hỏi:

16/10/2025 222 Lưu

Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ { - 45;45} \right\}\) thỏa mãn \(f'\left( x \right) = \frac{1}{{{x^2} - 2025}}\), \(f\left( {25} \right) = 0\). Tính \(f\left( { - 50} \right)\) thuộc khoảng nào?

A. \(\left( {0;1} \right)\). 
B. \(\left( { - 1;0} \right)\).                       
C. \(\left( { - 2; - 1} \right)\).                       
D. \(\left( {1;2} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Ta có \(f\left( x \right) = \int {f'\left( x \right)dx}  = \int {\frac{1}{{{x^2} - 2025}}dx = \frac{1}{{90}}\int {\left( {\frac{1}{{x - 45}} - \frac{1}{{x + 45}}} \right)dx} } \)\( = \frac{1}{{90}}\ln \left| {\frac{{x - 45}}{{x + 45}}} \right| + C\).

Mà \(f\left( {25} \right) = 0 \Rightarrow \frac{1}{{90}}\ln \frac{2}{7} + C = 0 \Rightarrow C =  - \frac{1}{{90}}\ln \frac{2}{7}\).

Khi đó \(f\left( x \right) = \frac{1}{{90}}\ln \left| {\frac{{x - 45}}{{x + 45}}} \right| - \frac{1}{{90}}\ln \frac{2}{7}\).

Do đó \(f\left( { - 50} \right) = \frac{1}{{90}}\ln 19 - \frac{1}{{90}}\ln \frac{2}{7} = \frac{1}{{90}}\ln \frac{{133}}{2} \approx 0,047 \in \left( {0;1} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(f\left( x \right) = F'\left( x \right) = 1;g\left( x \right) = G'\left( x \right) = \frac{x}{2}\).

Ta có \(H\left( x \right) = \int {f\left( x \right).g\left( x \right)dx} = \int {\frac{x}{2}dx} = \frac{{{x^2}}}{4} + C\).

\(H\left( 4 \right) = 4\) nên \(C = 0\). Do đó \(H\left( x \right) = \frac{{{x^2}}}{4}\).

Suy ra \(H\left( 1 \right) = \frac{1}{4} = 0,25\).

Trả lời: 0,25.

Lời giải

a) Ta có \({\left( { - 2\sin x + C} \right)^\prime } = - 4\cos x \ne 4{\cos ^2}\frac{x}{2}\) nên hàm số \(F\left( x \right) = - 2\sin x\) không phải là nguyên hàm của hàm số \(f\left( x \right)\) đã cho.

b) Ta có \(\int {f\left( x \right)dx} = \int {4{{\cos }^2}\frac{x}{2}dx} = \int {4.\frac{{1 + \cos x}}{2}dx} = 2\int {\left( {1 + \cos x} \right)dx} = 2\left( {x + \sin x} \right) + C\).

Suy ra \(\left\{ \begin{array}{l}a = 2\\b = 2\end{array} \right. \Rightarrow a + b = 4\).

c) Theo câu b, \(F\left( x \right) = 2\left( {x + \sin x} \right) + C\).

\(F\left( 0 \right) = 1 \Rightarrow C = 1\).

Vậy \(F\left( x \right) = 2\left( {x + \sin x} \right) + 1\).

d) Theo câu b, \(F\left( x \right) = 2\left( {x + \sin x} \right) + C\).

\(F\left( {\frac{\pi }{2}} \right) = 0\) nên \(2\left( {\frac{\pi }{2} + \sin \frac{\pi }{2}} \right) + C = 0 \Rightarrow C = - \pi - 2\).

Vậy ta có \(F\left( x \right) = 2\left( {x + \sin } \right) - \pi - 2\).

Đáp án: a) Sai;    b) Đúng;   c) Đúng;    d) Sai.

Câu 4

A. \({e^{2x}} + 8{x^2} + C\).                                                                     
B. \(2{e^x} + 4{x^2} + C\).                               
C. \(\frac{1}{2}{e^{2x}} + 2{x^2} + C\).                                                                     
D. \(\frac{1}{2}{e^{2x}} + 4{x^2} + C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP