Câu hỏi:

16/10/2025 100 Lưu

Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ { - 45;45} \right\}\) thỏa mãn \(f'\left( x \right) = \frac{1}{{{x^2} - 2025}}\), \(f\left( {25} \right) = 0\). Tính \(f\left( { - 50} \right)\) thuộc khoảng nào?

A. \(\left( {0;1} \right)\). 
B. \(\left( { - 1;0} \right)\).                       
C. \(\left( { - 2; - 1} \right)\).                       
D. \(\left( {1;2} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Ta có \(f\left( x \right) = \int {f'\left( x \right)dx}  = \int {\frac{1}{{{x^2} - 2025}}dx = \frac{1}{{90}}\int {\left( {\frac{1}{{x - 45}} - \frac{1}{{x + 45}}} \right)dx} } \)\( = \frac{1}{{90}}\ln \left| {\frac{{x - 45}}{{x + 45}}} \right| + C\).

Mà \(f\left( {25} \right) = 0 \Rightarrow \frac{1}{{90}}\ln \frac{2}{7} + C = 0 \Rightarrow C =  - \frac{1}{{90}}\ln \frac{2}{7}\).

Khi đó \(f\left( x \right) = \frac{1}{{90}}\ln \left| {\frac{{x - 45}}{{x + 45}}} \right| - \frac{1}{{90}}\ln \frac{2}{7}\).

Do đó \(f\left( { - 50} \right) = \frac{1}{{90}}\ln 19 - \frac{1}{{90}}\ln \frac{2}{7} = \frac{1}{{90}}\ln \frac{{133}}{2} \approx 0,047 \in \left( {0;1} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(f\left( x \right) = F'\left( x \right) = 1;g\left( x \right) = G'\left( x \right) = \frac{x}{2}\).

Ta có \(H\left( x \right) = \int {f\left( x \right).g\left( x \right)dx} = \int {\frac{x}{2}dx} = \frac{{{x^2}}}{4} + C\).

\(H\left( 4 \right) = 4\) nên \(C = 0\). Do đó \(H\left( x \right) = \frac{{{x^2}}}{4}\).

Suy ra \(H\left( 1 \right) = \frac{1}{4} = 0,25\).

Trả lời: 0,25.

Câu 2

A. \({e^{2x}} + 8{x^2} + C\).                                                                     
B. \(2{e^x} + 4{x^2} + C\).                               
C. \(\frac{1}{2}{e^{2x}} + 2{x^2} + C\).                                                                     
D. \(\frac{1}{2}{e^{2x}} + 4{x^2} + C\).

Lời giải

D

Có \(f\left( x \right) = F'\left( x \right) = {e^x} + 4x\)\( \Rightarrow f\left( {2x} \right) = {e^{2x}} + 8x\).

Do đó \(\int {f\left( {2x} \right)dx} = \int {\left( {{e^{2x}} + 8x} \right)dx} = \frac{1}{2}{e^{2x}} + 4{x^2} + C\).