Cho hàm số \(f\left( x \right) = 4{\cos ^2}\frac{x}{2}\).
a) \(\int {f\left( x \right)dx} = - 2\sin x + C\).
b) Biết rằng \(\int {f\left( x \right)} dx = ax + b\sin x + C,a,b \in \mathbb{Z}\). Khi đó \(a + b = 4\).
c) Nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right)\) thỏa mãn \(F\left( 0 \right) = 1\) là \(F\left( x \right) = 2\left( {x + \sin x} \right) + 1\).
d) Nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right)\) thỏa mãn \(F\left( {\frac{\pi }{2}} \right) = 0\) là \(F\left( x \right) = 2\left( {x + \sin x} \right) - \pi \).
Cho hàm số \(f\left( x \right) = 4{\cos ^2}\frac{x}{2}\).
a) \(\int {f\left( x \right)dx} = - 2\sin x + C\).
b) Biết rằng \(\int {f\left( x \right)} dx = ax + b\sin x + C,a,b \in \mathbb{Z}\). Khi đó \(a + b = 4\).
c) Nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right)\) thỏa mãn \(F\left( 0 \right) = 1\) là \(F\left( x \right) = 2\left( {x + \sin x} \right) + 1\).
d) Nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right)\) thỏa mãn \(F\left( {\frac{\pi }{2}} \right) = 0\) là \(F\left( x \right) = 2\left( {x + \sin x} \right) - \pi \).
Quảng cáo
Trả lời:
a) Ta có \({\left( { - 2\sin x + C} \right)^\prime } = - 4\cos x \ne 4{\cos ^2}\frac{x}{2}\) nên hàm số \(F\left( x \right) = - 2\sin x\) không phải là nguyên hàm của hàm số \(f\left( x \right)\) đã cho.
b) Ta có \(\int {f\left( x \right)dx} = \int {4{{\cos }^2}\frac{x}{2}dx} = \int {4.\frac{{1 + \cos x}}{2}dx} = 2\int {\left( {1 + \cos x} \right)dx} = 2\left( {x + \sin x} \right) + C\).
Suy ra \(\left\{ \begin{array}{l}a = 2\\b = 2\end{array} \right. \Rightarrow a + b = 4\).
c) Theo câu b, \(F\left( x \right) = 2\left( {x + \sin x} \right) + C\).
Vì \(F\left( 0 \right) = 1 \Rightarrow C = 1\).
Vậy \(F\left( x \right) = 2\left( {x + \sin x} \right) + 1\).
d) Theo câu b, \(F\left( x \right) = 2\left( {x + \sin x} \right) + C\).
Vì \(F\left( {\frac{\pi }{2}} \right) = 0\) nên \(2\left( {\frac{\pi }{2} + \sin \frac{\pi }{2}} \right) + C = 0 \Rightarrow C = - \pi - 2\).
Vậy ta có \(F\left( x \right) = 2\left( {x + \sin } \right) - \pi - 2\).
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Sai.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(f\left( x \right) = F'\left( x \right) = 1;g\left( x \right) = G'\left( x \right) = \frac{x}{2}\).
Ta có \(H\left( x \right) = \int {f\left( x \right).g\left( x \right)dx} = \int {\frac{x}{2}dx} = \frac{{{x^2}}}{4} + C\).
Vì \(H\left( 4 \right) = 4\) nên \(C = 0\). Do đó \(H\left( x \right) = \frac{{{x^2}}}{4}\).
Suy ra \(H\left( 1 \right) = \frac{1}{4} = 0,25\).
Trả lời: 0,25.
Câu 2
Lời giải
D
Có \(f\left( x \right) = F'\left( x \right) = {e^x} + 4x\)\( \Rightarrow f\left( {2x} \right) = {e^{2x}} + 8x\).
Do đó \(\int {f\left( {2x} \right)dx} = \int {\left( {{e^{2x}} + 8x} \right)dx} = \frac{1}{2}{e^{2x}} + 4{x^2} + C\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.