Cho hàm số \(f\left( x \right) = 4{\cos ^2}\frac{x}{2}\).
a) \(\int {f\left( x \right)dx} = - 2\sin x + C\).
b) Biết rằng \(\int {f\left( x \right)} dx = ax + b\sin x + C,a,b \in \mathbb{Z}\). Khi đó \(a + b = 4\).
c) Nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right)\) thỏa mãn \(F\left( 0 \right) = 1\) là \(F\left( x \right) = 2\left( {x + \sin x} \right) + 1\).
d) Nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right)\) thỏa mãn \(F\left( {\frac{\pi }{2}} \right) = 0\) là \(F\left( x \right) = 2\left( {x + \sin x} \right) - \pi \).
Cho hàm số \(f\left( x \right) = 4{\cos ^2}\frac{x}{2}\).
a) \(\int {f\left( x \right)dx} = - 2\sin x + C\).
b) Biết rằng \(\int {f\left( x \right)} dx = ax + b\sin x + C,a,b \in \mathbb{Z}\). Khi đó \(a + b = 4\).
c) Nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right)\) thỏa mãn \(F\left( 0 \right) = 1\) là \(F\left( x \right) = 2\left( {x + \sin x} \right) + 1\).
d) Nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right)\) thỏa mãn \(F\left( {\frac{\pi }{2}} \right) = 0\) là \(F\left( x \right) = 2\left( {x + \sin x} \right) - \pi \).
Quảng cáo
Trả lời:
a) Ta có \({\left( { - 2\sin x + C} \right)^\prime } = - 4\cos x \ne 4{\cos ^2}\frac{x}{2}\) nên hàm số \(F\left( x \right) = - 2\sin x\) không phải là nguyên hàm của hàm số \(f\left( x \right)\) đã cho.
b) Ta có \(\int {f\left( x \right)dx} = \int {4{{\cos }^2}\frac{x}{2}dx} = \int {4.\frac{{1 + \cos x}}{2}dx} = 2\int {\left( {1 + \cos x} \right)dx} = 2\left( {x + \sin x} \right) + C\).
Suy ra \(\left\{ \begin{array}{l}a = 2\\b = 2\end{array} \right. \Rightarrow a + b = 4\).
c) Theo câu b, \(F\left( x \right) = 2\left( {x + \sin x} \right) + C\).
Vì \(F\left( 0 \right) = 1 \Rightarrow C = 1\).
Vậy \(F\left( x \right) = 2\left( {x + \sin x} \right) + 1\).
d) Theo câu b, \(F\left( x \right) = 2\left( {x + \sin x} \right) + C\).
Vì \(F\left( {\frac{\pi }{2}} \right) = 0\) nên \(2\left( {\frac{\pi }{2} + \sin \frac{\pi }{2}} \right) + C = 0 \Rightarrow C = - \pi - 2\).
Vậy ta có \(F\left( x \right) = 2\left( {x + \sin } \right) - \pi - 2\).
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(f\left( x \right) = F'\left( x \right) = 1;g\left( x \right) = G'\left( x \right) = \frac{x}{2}\).
Ta có \(H\left( x \right) = \int {f\left( x \right).g\left( x \right)dx} = \int {\frac{x}{2}dx} = \frac{{{x^2}}}{4} + C\).
Vì \(H\left( 4 \right) = 4\) nên \(C = 0\). Do đó \(H\left( x \right) = \frac{{{x^2}}}{4}\).
Suy ra \(H\left( 1 \right) = \frac{1}{4} = 0,25\).
Trả lời: 0,25.
Lời giải
a) Ta có \(\int {f\left( x \right)dx} = \int {\frac{{2x + 1}}{x}dx} = \int {\left( {2 + \frac{1}{x}} \right)dx = 2x + 2\ln \left| x \right| + C} \).
b) Ta có \(\int {f\left( x \right)dx} = \int {\frac{{2x + 1}}{x}dx} = \int {\left( {2 + \frac{1}{x}} \right)dx} = 2x + \ln \left| x \right| + C\).
Suy ra \(F\left( x \right) = 2x + \ln \left| x \right| + C\).
Mà \(F\left( 1 \right) = 0 \Leftrightarrow 2.1 + C = 0 \Leftrightarrow C = - 2\)\( \Rightarrow F\left( x \right) = 2x + \ln \left| x \right| - 2\).
Vậy \(F\left( 2 \right) = 2.2 + \ln 2 - 2 = 2 + \ln 2\).
c) Ta có \(f\left( x \right) = \frac{{2x + 1}}{x} = 2 + \frac{1}{x} \Rightarrow f\left( {2x} \right) = 2 + \frac{1}{{2x}}\).
\(\int {f\left( {2x} \right)dx} = \int {\left( {2 + \frac{1}{{2x}}} \right)dx = 2x + \frac{1}{2}\ln \left| x \right| + C} \).
Mà \(F\left( x \right) = 2x + \ln \left| x \right| + C \Rightarrow F\left( {2x} \right) = 4x + \ln \left| {2x} \right| + C\).
Vậy \(F\left( {2x} \right)\) không phải là một nguyên hàm của hàm số \(f\left( {2x} \right)\).
d) Hàm số \(f\left( {{e^x}} \right) = 2 + \frac{1}{{{e^x}}} = 2 + {e^{ - x}}\) \( \Rightarrow \int {f\left( {{e^x}} \right)} dx = \int {\left( {2 + {e^{ - x}}} \right)dx} = 2x - {e^{ - x}} + C\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.