Một máy bay di chuyển ra đến đường băng và bắt đầu chạy đà để cất cánh. Giả sử vận tốc của máy bay khi chạy đà được cho bởi \(v\left( t \right) = 5 + 3t\) (m/s) với \(t\)là thời gian kể từ khi máy bay bắt đầu chạy đà. Sau 35 giây thì máy bay cất cánh trên đường băng. Gọi \(s\left( t \right)\) là quãng đường máy bay di chuyển được sau \(t\) giây kể từ lúc bắt đầu chạy đà.
a) \(v\left( t \right) = s'\left( t \right)\).
b) \(s\left( t \right) = \frac{3}{2}{t^2} + 5t + 5\).
c) Quãng đường máy bay di chuyển được sau 6 giây kể từ khi bắt đầu chạy đà là 85 mét.
d) Quãng đường máy bay đã di chuyển từ khi bắt đầu chạy đà đến khi rời đường bằng là 2013 m (kết quả làm tròn đến hàng đơn vị).
Một máy bay di chuyển ra đến đường băng và bắt đầu chạy đà để cất cánh. Giả sử vận tốc của máy bay khi chạy đà được cho bởi \(v\left( t \right) = 5 + 3t\) (m/s) với \(t\)là thời gian kể từ khi máy bay bắt đầu chạy đà. Sau 35 giây thì máy bay cất cánh trên đường băng. Gọi \(s\left( t \right)\) là quãng đường máy bay di chuyển được sau \(t\) giây kể từ lúc bắt đầu chạy đà.
a) \(v\left( t \right) = s'\left( t \right)\).
b) \(s\left( t \right) = \frac{3}{2}{t^2} + 5t + 5\).
c) Quãng đường máy bay di chuyển được sau 6 giây kể từ khi bắt đầu chạy đà là 85 mét.
d) Quãng đường máy bay đã di chuyển từ khi bắt đầu chạy đà đến khi rời đường bằng là 2013 m (kết quả làm tròn đến hàng đơn vị).
Quảng cáo
Trả lời:
a) Ta có \(v\left( t \right) = s'\left( t \right)\).
b) Có \(s\left( t \right) = \int {v\left( t \right)dt} = \int {\left( {5 + 3t} \right)dt} = \int {5dt} + \int {3tdt} = \frac{3}{2}{t^2} + 5t + C\).
Vì \(s\left( 0 \right) = 0 \Rightarrow C = 0\).
Do đó \(s\left( t \right) = \frac{3}{2}{t^2} + 5t\).
c) Ta có \(s = \int\limits_0^6 {v\left( t \right)dt} = \left. {\left( {\frac{3}{2}{t^2} + 5t} \right)} \right|_0^6 = \frac{3}{2}{.6^2} + 5.6 = 84\).
d) Máy bay rời đường băng khi \(t = 35\) giây nên \(s = \int\limits_0^{35} {v\left( t \right)dt} = \left. {\left( {\frac{3}{2}{t^2} + 5t} \right)} \right|_0^{35} = 2012,5\).
Quãng đường máy bay đã di chuyển từ khi bắt đầu chạy đà đến khi rời đường băng làm tròn đến hàng đơn vị là 2013 m.
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C
Thời điểm vật dừng lại là \(v\left( t \right) = 0 \Leftrightarrow 27 - 9\sqrt t = 0 \Leftrightarrow t = 9\) giây.
Quãng đường mà ô tô di chuyển được từ thời điểm \(t = 0\) đến thời điểm mà vật dừng lại là:
\(s = \int\limits_0^9 {\left( {27 - 9\sqrt t } \right)dt} = \left. {\left( {27t - 6t\sqrt t } \right)} \right|_0^9 = 81\) m.
Lời giải
Ta có \(\int\limits_0^2 {f\left( x \right)dx} = F\left( 2 \right) - F\left( 0 \right)\)\( \Rightarrow F\left( 2 \right) = \int\limits_0^2 {f\left( x \right)dx} + F\left( 0 \right) = 3 + 2 = 5\).
Trả lời: 5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.