Câu hỏi:

16/10/2025 629 Lưu

Tính diện tích phần hình phẳng gạch chéo (tam giác cong OAB) trong hình vẽ bên.

Tính diện tích phần hình phẳng gạch chéo (tam giác cong OAB) trong hình vẽ bên. (ảnh 1)

A. \(\frac{5}{6}\).              

B. \(\frac{{5\pi }}{6}\). 
C. \(\frac{8}{{15}}\).             

 

D. \(\frac{{8\pi }}{{15}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Chọn A

Diện tích phần gạch chéo:

\(S = \int\limits_0^1 {\left| x \right|dx}  + \int\limits_1^2 {\left| {{{\left( {x - 2} \right)}^2}} \right|dx} \)\( = \int\limits_0^1 {xdx}  + \int\limits_1^2 {{{\left( {x - 2} \right)}^2}dx} \)\( = \left. {\frac{{{x^2}}}{2}} \right|_0^1 + \left. {\frac{{{{\left( {x - 2} \right)}^3}}}{3}} \right|_1^2\)\( = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Phương trình hoành độ giao điểm: \({x^2} - 3x + 2 = x - 1 \Leftrightarrow {x^2} - 4x + 3 = 0\)\( \Leftrightarrow x = 1\) hoặc \(x = 3\).

Diện tích cần tính là \({S_2} = \int\limits_1^3 {\left| {x - 1 - \left( {{x^2} - 3x + 2} \right)} \right|dx}  = \int\limits_1^3 {\left( { - {x^2} + 4x - 3} \right)dx}  = \left. {\left( { - \frac{{{x^3}}}{3} + 2{x^2} - 3x} \right)} \right|_1^3 = \frac{4}{3}\).

b) \({S_1} = \int\limits_0^1 {\left| {{x^2} - 3x + 2 - \left( {x - 1} \right)} \right|dx}  = \int\limits_0^1 {\left( {{x^2} - 4x + 3} \right)dx} \)\( = \left. {\frac{{{x^3}}}{3} - 2{x^2} + 3x} \right|_0^1 = \frac{4}{3}\).

c) \({S_1} = {S_2} = \frac{4}{3}\).

d) Diện tích cần tìm là \(S = \int\limits_0^3 {\left| {{x^2} - 3x + 2 - \left( {x - 1} \right)} \right|dx}  = \int\limits_0^3 {\left| {{x^2} - 4x + 3} \right|dx} \)\( = \int\limits_0^1 {\left( {{x^2} - 4x + 3} \right)dx}  + \int\limits_1^3 {\left( { - {x^2} + 4x - 3} \right)dx}  = {S_1} + {S_2} = 2.\frac{4}{3} = \frac{8}{3}\).

Đáp án: a) Sai; b) Đúng;   c) Đúng;   d) Sai.

Lời giải

Ta có \(\int\limits_0^3 {f'\left( x \right)dx}  = \int\limits_0^1 {f'\left( x \right)dx}  + \int\limits_1^3 {f'\left( x \right)dx}  = {S_A} - {S_B} = 4 - 10 =  - 6\).

Lại có \(\int\limits_0^3 {f'\left( x \right)dx}  = \left. {f\left( x \right)} \right|_0^3 = f\left( 3 \right) - f\left( 0 \right) =  - 6 \Rightarrow f\left( 3 \right) =  - 6 + f\left( 0 \right) =  - 6 + 2 =  - 4\).

Trả lời: −4.

Câu 6

A. \(S = 4\ln 2 + e - 5\).    
B. \(S = 4\ln 2 + e - 6\).                                     
C. \(S = {e^2} - 7\).      
D. \(S = e - 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP