Hình dưới mô phỏng phần bên trong của một chậu cây có dạng khối tròn xoay tạo thành khi quay một phần của đồ thị hàm số \(y = \sqrt x + \frac{3}{2}\) với \(0 \le x \le 4\) quanh trục hoành. Biết đơn vị trên các trục Ox, Oy là dm, thể tích phần bên trong (dung tích) của chậu cây là bao nhiêu lít (làm tròn kết quả đến hàng đơn vị).
Hình dưới mô phỏng phần bên trong của một chậu cây có dạng khối tròn xoay tạo thành khi quay một phần của đồ thị hàm số \(y = \sqrt x + \frac{3}{2}\) với \(0 \le x \le 4\) quanh trục hoành. Biết đơn vị trên các trục Ox, Oy là dm, thể tích phần bên trong (dung tích) của chậu cây là bao nhiêu lít (làm tròn kết quả đến hàng đơn vị).
Quảng cáo
Trả lời:
Thể tích cần tìm là \(V = \pi \int\limits_0^4 {{{\left( {\sqrt x + \frac{3}{2}} \right)}^2}dx} = \pi \int\limits_0^4 {\left( {x + 3\sqrt x + \frac{9}{4}} \right)dx} \)
\( = \pi \left. {\left( {\frac{{{x^2}}}{2} + 2{x^{\frac{3}{2}}} + \frac{9}{4}x} \right)} \right|_0^4\)\( = 33\pi \approx 104\) lít.
Trả lời: 104.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\int\limits_0^3 {f'\left( x \right)dx} = \int\limits_0^1 {f'\left( x \right)dx} + \int\limits_1^3 {f'\left( x \right)dx} = {S_A} - {S_B} = 4 - 10 = - 6\).
Lại có \(\int\limits_0^3 {f'\left( x \right)dx} = \left. {f\left( x \right)} \right|_0^3 = f\left( 3 \right) - f\left( 0 \right) = - 6 \Rightarrow f\left( 3 \right) = - 6 + f\left( 0 \right) = - 6 + 2 = - 4\).
Trả lời: −4.
Lời giải
a) Phương trình hoành độ giao điểm: \({x^2} - 3x + 2 = x - 1 \Leftrightarrow {x^2} - 4x + 3 = 0\)\( \Leftrightarrow x = 1\) hoặc \(x = 3\).
Diện tích cần tính là \({S_2} = \int\limits_1^3 {\left| {x - 1 - \left( {{x^2} - 3x + 2} \right)} \right|dx} = \int\limits_1^3 {\left( { - {x^2} + 4x - 3} \right)dx} = \left. {\left( { - \frac{{{x^3}}}{3} + 2{x^2} - 3x} \right)} \right|_1^3 = \frac{4}{3}\).
b) \({S_1} = \int\limits_0^1 {\left| {{x^2} - 3x + 2 - \left( {x - 1} \right)} \right|dx} = \int\limits_0^1 {\left( {{x^2} - 4x + 3} \right)dx} \)\( = \left. {\frac{{{x^3}}}{3} - 2{x^2} + 3x} \right|_0^1 = \frac{4}{3}\).
c) \({S_1} = {S_2} = \frac{4}{3}\).
d) Diện tích cần tìm là \(S = \int\limits_0^3 {\left| {{x^2} - 3x + 2 - \left( {x - 1} \right)} \right|dx} = \int\limits_0^3 {\left| {{x^2} - 4x + 3} \right|dx} \)\( = \int\limits_0^1 {\left( {{x^2} - 4x + 3} \right)dx} + \int\limits_1^3 {\left( { - {x^2} + 4x - 3} \right)dx} = {S_1} + {S_2} = 2.\frac{4}{3} = \frac{8}{3}\).
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Sai.
Câu 3
A. \(\frac{5}{6}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Cho hình phẳng được tô màu trong hình bên dưới

a) Hình phẳng được tô màu trong hình trên được giới hạn các đồ thị \(y = {x^2},y = 0,x = 1,x = 2\).
b) Diện tích hình phẳng phần tô màu trong hình vẽ là \(\int\limits_1^2 {{x^2}dx} \).
c) Hình phẳng được gạch chéo trong hình trên được giới hạn các đồ thị \(y = {x^2},y = 0,x = 0,x = 2\).
d) Diện tích hình phẳng gạch chéo trong hình vẽ bằng \(\frac{4}{3}\).
Cho hình phẳng được tô màu trong hình bên dưới

a) Hình phẳng được tô màu trong hình trên được giới hạn các đồ thị \(y = {x^2},y = 0,x = 1,x = 2\).
b) Diện tích hình phẳng phần tô màu trong hình vẽ là \(\int\limits_1^2 {{x^2}dx} \).
c) Hình phẳng được gạch chéo trong hình trên được giới hạn các đồ thị \(y = {x^2},y = 0,x = 0,x = 2\).
d) Diện tích hình phẳng gạch chéo trong hình vẽ bằng \(\frac{4}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



