Câu hỏi:

16/10/2025 670 Lưu

PHẦN III. TRẢ LỜI NGẮN

Cho hàm số \(y = f\left( x \right)\). Đồ thị hàm số \(y = f'\left( x \right)\) là đường cong trong hình dưới. Biết rằng diện tích của các phần hình phẳng A và B lần lượt là \({S_A} = 4\)\({S_B} = 10\). Tính giá trị của \(f\left( 3 \right)\), biết giá trị của \(f\left( 0 \right) = 2\).

Cho hàm số \(y = f\left( x \right)\). Đ (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\int\limits_0^3 {f'\left( x \right)dx}  = \int\limits_0^1 {f'\left( x \right)dx}  + \int\limits_1^3 {f'\left( x \right)dx}  = {S_A} - {S_B} = 4 - 10 =  - 6\).

Lại có \(\int\limits_0^3 {f'\left( x \right)dx}  = \left. {f\left( x \right)} \right|_0^3 = f\left( 3 \right) - f\left( 0 \right) =  - 6 \Rightarrow f\left( 3 \right) =  - 6 + f\left( 0 \right) =  - 6 + 2 =  - 4\).

Trả lời: −4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Phương trình hoành độ giao điểm: \({x^2} - 3x + 2 = x - 1 \Leftrightarrow {x^2} - 4x + 3 = 0\)\( \Leftrightarrow x = 1\) hoặc \(x = 3\).

Diện tích cần tính là \({S_2} = \int\limits_1^3 {\left| {x - 1 - \left( {{x^2} - 3x + 2} \right)} \right|dx}  = \int\limits_1^3 {\left( { - {x^2} + 4x - 3} \right)dx}  = \left. {\left( { - \frac{{{x^3}}}{3} + 2{x^2} - 3x} \right)} \right|_1^3 = \frac{4}{3}\).

b) \({S_1} = \int\limits_0^1 {\left| {{x^2} - 3x + 2 - \left( {x - 1} \right)} \right|dx}  = \int\limits_0^1 {\left( {{x^2} - 4x + 3} \right)dx} \)\( = \left. {\frac{{{x^3}}}{3} - 2{x^2} + 3x} \right|_0^1 = \frac{4}{3}\).

c) \({S_1} = {S_2} = \frac{4}{3}\).

d) Diện tích cần tìm là \(S = \int\limits_0^3 {\left| {{x^2} - 3x + 2 - \left( {x - 1} \right)} \right|dx}  = \int\limits_0^3 {\left| {{x^2} - 4x + 3} \right|dx} \)\( = \int\limits_0^1 {\left( {{x^2} - 4x + 3} \right)dx}  + \int\limits_1^3 {\left( { - {x^2} + 4x - 3} \right)dx}  = {S_1} + {S_2} = 2.\frac{4}{3} = \frac{8}{3}\).

Đáp án: a) Sai; b) Đúng;   c) Đúng;   d) Sai.

Câu 2

A. \(\frac{5}{6}\).              

B. \(\frac{{5\pi }}{6}\). 
C. \(\frac{8}{{15}}\).             

 

D. \(\frac{{8\pi }}{{15}}\).

Lời giải

Chọn A

Diện tích phần gạch chéo:

\(S = \int\limits_0^1 {\left| x \right|dx}  + \int\limits_1^2 {\left| {{{\left( {x - 2} \right)}^2}} \right|dx} \)\( = \int\limits_0^1 {xdx}  + \int\limits_1^2 {{{\left( {x - 2} \right)}^2}dx} \)\( = \left. {\frac{{{x^2}}}{2}} \right|_0^1 + \left. {\frac{{{{\left( {x - 2} \right)}^3}}}{3}} \right|_1^2\)\( = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}\).

Câu 6

Cho hình phẳng được tô màu trong hình bên dưới

Cho hình phẳng được tô màu trong hình bên dưới (ảnh 1)

a) Hình phẳng được tô màu trong hình trên được giới hạn các đồ thị \(y = {x^2},y = 0,x = 1,x = 2\).

b) Diện tích hình phẳng phần tô màu trong hình vẽ là \(\int\limits_1^2 {{x^2}dx} \).

c) Hình phẳng được gạch chéo trong hình trên được giới hạn các đồ thị \(y = {x^2},y = 0,x = 0,x = 2\).

d) Diện tích hình phẳng gạch chéo trong hình vẽ bằng \(\frac{4}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP