Công thức nào sau đây mô tả diện tích của phần gạch chéo trong hình vẽ bên dưới?

Công thức nào sau đây mô tả diện tích của phần gạch chéo trong hình vẽ bên dưới?

Quảng cáo
Trả lời:
Chọn B
Ta có \(S = \int\limits_{ - 1}^2 {\left| {\left( { - {x^2} + 3} \right) - \left( {{x^2} - 2x - 1} \right)} \right|dx} = \int\limits_{ - 1}^2 {\left( { - 2{x^2} + 2x + 4} \right)dx} \).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Đưa hình vẽ về dạng của hàm số \(y = a\sqrt x \)
Chọn hệ trục Oxy với Ox đi qua chính giữa trục của mảnh đất (theo chiều của chiều cao), gốc tọa độ O cách điểm chính giữa của đoạn AB là 4, khi đó ta có \({y_B} = 4;{y_C} = 6\) nên B(4; 4), C(9; 6).

Do đó ta tìm được a = 2.
Suy ra \(S = 2\int\limits_4^9 {2\sqrt x dx} = \frac{{152}}{3} \approx 50,7\).
Trả lời: 50,7.
Lời giải
Có \(F'\left( x \right) = f\left( x \right)\).
\[F'\left( x \right) = \left( {2ax + b} \right){e^x} + \left( {a{x^2} + bx + c} \right){e^x}\]\[ = \left( {a{x^2} + \left( {2a + b} \right)x + b + c} \right){e^x}\].
Suy ra \(\left\{ \begin{array}{l}a = 1\\2a + b = 0\\b + c = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 2\\c = 3\end{array} \right.\).
Vậy \(S = a + b + c = 2\).
Trả lời: 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Cho hàm số \(f\left( x \right)\) xác định trên ℝ\{0} thỏa mãn \(f\left( x \right) = x + 5 - \frac{6}{x}\).
a) f(x) là một nguyên hàm của hàm số \(g\left( x \right) = 1 + \frac{6}{{{x^2}}}\).
b) \(\int {f\left( x \right)dx} = \frac{1}{2}{x^2} + 5x - 6\ln x + C\).
c) Gọi F(x) là một nguyên hàm của hàm số f(x) và thỏa mãn F(1) = 5. Khi đó \(F\left( 2 \right) = 5 + \int\limits_1^2 {f\left( x \right)dx} \).
d) Gọi G(x) là một nguyên hàm của hàm số f(x) thỏa mãn G(1) = 4 và G(2) + G(−1) = 5. Khi đó \(G\left( { - 6} \right) = - 13 - 6\ln 3\).
Cho hàm số \(f\left( x \right)\) xác định trên ℝ\{0} thỏa mãn \(f\left( x \right) = x + 5 - \frac{6}{x}\).
a) f(x) là một nguyên hàm của hàm số \(g\left( x \right) = 1 + \frac{6}{{{x^2}}}\).
b) \(\int {f\left( x \right)dx} = \frac{1}{2}{x^2} + 5x - 6\ln x + C\).
c) Gọi F(x) là một nguyên hàm của hàm số f(x) và thỏa mãn F(1) = 5. Khi đó \(F\left( 2 \right) = 5 + \int\limits_1^2 {f\left( x \right)dx} \).
d) Gọi G(x) là một nguyên hàm của hàm số f(x) thỏa mãn G(1) = 4 và G(2) + G(−1) = 5. Khi đó \(G\left( { - 6} \right) = - 13 - 6\ln 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


