Bác An dự định làm bốn mái nhà của một ngôi nhà sao cho chúng là bốn mặt bên của một hình chóp tứ giác đều và các mái kề nhau thì vuông góc với nhau. Hỏi ý tưởng đó có làm được không?

Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 5 có đáp án !!
Quảng cáo
Trả lời:

Giả sử mái nhà của ngôi nhà được minh họa như hình vẽ trên. Ta gắn hệ trục tọa độ như hình vẽ.
Gọi các cạnh đáy của hình chóp có độ dài là \(a\) và các cạnh bên có độ dài là \(b\).
Vì \(ABCD\)là hình vuông cạnh \(a\) nên \(OA = OB = OC = OD = a\sqrt 2 \).
Vì \(SO\) là đường cao của tam giác \(SOC\)nên \(SO = \sqrt {S{C^2} - O{C^2}} = \sqrt {{b^2} - \frac{{{a^2}}}{2}} = \sqrt {\frac{{2{b^2} - {a^2}}}{2}} \).
Khi đóta có: \(O\left( {0;0;0} \right);\,A\left( {\frac{{ - a\sqrt 2 }}{2};0;0} \right),C\left( {\frac{{a\sqrt 2 }}{2};0;0} \right),B\left( {0;\frac{{ - a\sqrt 2 }}{2};0} \right);D\left( {0;\frac{{a\sqrt 2 }}{2};0} \right)\) và \(S\left( {0;0;\sqrt {\frac{{2{b^2} - {a^2}}}{2}} } \right)\).
Ta có: \(\overrightarrow {SC} = \left( {\frac{{a\sqrt 2 }}{2};0; - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} } \right);\,\overrightarrow {DC} = \left( {\frac{{a\sqrt 2 }}{2}; - \frac{{a\sqrt 2 }}{2};0} \right)\); \(\,\overrightarrow {BC} = \left( {\frac{{a\sqrt 2 }}{2};\frac{{a\sqrt 2 }}{2};0} \right)\).
Mặt khác: \(\overrightarrow {{n_1}} = \left[ {\overrightarrow {SC} ;\frac{{\sqrt 2 }}{a}\overrightarrow {DC} } \right] = \left( {\sqrt {\frac{{2{b^2} - {a^2}}}{2}} ;\sqrt {\frac{{2{b^2} - {a^2}}}{2}} ; - \frac{{a\sqrt 2 }}{2}} \right)\);
\(\overrightarrow {{n_2}} = \left[ {\overrightarrow {SC} ;\frac{{\sqrt 2 }}{a}\overrightarrow {BC} } \right] = \left( {\sqrt {\frac{{2{b^2} - {a^2}}}{2}} ; - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} ;\frac{{a\sqrt 2 }}{2}} \right)\).
Mặt phẳng \(\left( {SCD} \right)\) nhận \(\overrightarrow {{n_1}} \) làm một vectơ pháp tuyến.
Mặt phẳng \(\left( {SBC} \right)\) nhận \(\overrightarrow {{n_2}} \) làm một vectơ pháp tuyến.
Vì \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = \frac{{ - {a^2}}}{2} \ne 0\) do đó hai mặt phẳng \(\left( {SCD} \right)\) và \(\left( {SBC} \right)\)không vuông góc với nhau.
Do đó ý tưởng trên không thực hiện được.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:
\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\) \(\left( 1 \right)\)
\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\) \(\left( 2 \right)\)
\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\) \(\left( 3 \right)\)
\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)
Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c = - 1\) nên \(M\left( {1;2; - 1} \right)\).
Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).
Đáp án: 2.
Lời giải
Ta có \(AB\) ngắn nhất khi \(AB\) là đoạn vuông góc chung của \({d_1}\) và \({d_2}\).
Gọi \(A\left( {2 + a;2 + a; - a} \right) \in {d_1};\,\,B\left( {2 + b; - 1 + 2b; - 3b} \right) \in {d_2}\)\( \Rightarrow \overrightarrow {AB} \left( {b - a;2b - a - 3; - 3b + a} \right)\).
\({d_1},\,{d_2}\) lần lượt có các véc tơ chỉ phương là \({\vec u_{{d_1}}} = \left( {1;1; - 1} \right)\) và \({\vec u_{{d_2}}} = \left( {1;2; - 3} \right)\)
Ta có: \[\left\{ \begin{array}{l}\overrightarrow {AB} .{{\vec u}_{{d_1}}} = 0\\\overrightarrow {AB} .{{\vec u}_{{d_2}}} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1\left( {b - a} \right) + 1\left( {2b - a - 3} \right) - 1\left( { - 3b + a} \right) = 0\\1\left( {b - a} \right) + 2\left( {2b - a - 3} \right) - 3\left( { - 3b + a} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}6b - 3a - 3 = 0\\14b - 6a - 6 = 0\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A\left( {1;1;1} \right)\\B\left( {2; - 1;0} \right)\end{array} \right. \Rightarrow \overrightarrow {AB} = \left( {1; - 2; - 1} \right)\]
Do đó \[\left| {\overrightarrow {AB} } \right| = \sqrt 6 \approx 2,45\].
Đáp án: 2,45.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


