Mệnh đề nào dưới đây đúng?
Mệnh đề nào dưới đây đúng?
Quảng cáo
Trả lời:
Hàm số \(y = \cos x\) là hàm số chẵn.
Các hàm số \(y = \sin x\), \(y = \tan x\), \(y = \cot x\) là các hàm số lẻ. Chọn D.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có \[MN\] là đường trung bình tam giác \[SAC\].
Suy ra \[MN\,{\rm{//}}\,AC\].
Do đó: \[\left\{ \begin{array}{l}MN{\rm{//}}AC\\MN \not\subset \left( {ABCD} \right);AC \subset \left( {ABCD} \right)\end{array} \right. \Rightarrow MN{\rm{//}}\left( {ABCD} \right).\]
b) Gọi \[I\] là giao điểm của \[MN\] và \[SO\].
\(Q\) là giao điểm của \[PI\] và \[SD\].
Ta có \[Q \in PI,PI \subset \left( {MNP} \right) \Rightarrow Q \in \left( {MNP} \right).\]
Mà \[Q \in SD\]. Suy ra \(Q\) là giao điểm của \(SD\) và mặt phẳng \(\left( {MNP} \right)\).
Chứng minh được \[I\]là trung điểm \[SO\] nên \[PI\] là đường trung bình tam giác \[SBO\].
Suy ra \[PI{\rm{//}}SB\] hay \[PQ{\rm{//}}SB\].
Xét tam giác SBD có \[PQ{\rm{//}}SB\] nên \(\frac{{SQ}}{{SD}} = \frac{{BP}}{{BD}} = \frac{1}{4}\).
Câu 2
A. \(BC{\rm{//}}\left( {SAD} \right)\).
Lời giải
Ta có \(BC\,{\rm{//}}\,AD\) nên \(BC{\rm{//}}\left( {SAD} \right)\) và \(AD{\rm{//}}\left( {SBC} \right)\), vậy đáp án A và đáp án D đúng.
Lại có \(CD\,{\rm{//}}\,AB\) nên \(CD{\rm{//}}\left( {SAB} \right)\), vậy đáp án B đúng.
Vì \[\left\{ \begin{array}{l}S \in SA\\S \in \left( {SCD} \right)\end{array} \right. \Rightarrow SA \cap \left( {SCD} \right) = S\], vậy đáp án C sai. Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

