Cho hình lập phương ABCD.EFGH. Mệnh đề nào sau đây sai?

Cho hình lập phương ABCD.EFGH. Mệnh đề nào sau đây sai?

A. \(BG\) và \(HD\) chéo nhau.
Quảng cáo
Trả lời:
Ta có \(CG\) và \(HE\) chéo nhau nên đáp án D sai. Chọn D.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có \[MN\] là đường trung bình tam giác \[SAC\].
Suy ra \[MN\,{\rm{//}}\,AC\].
Do đó: \[\left\{ \begin{array}{l}MN{\rm{//}}AC\\MN \not\subset \left( {ABCD} \right);AC \subset \left( {ABCD} \right)\end{array} \right. \Rightarrow MN{\rm{//}}\left( {ABCD} \right).\]
b) Gọi \[I\] là giao điểm của \[MN\] và \[SO\].
\(Q\) là giao điểm của \[PI\] và \[SD\].
Ta có \[Q \in PI,PI \subset \left( {MNP} \right) \Rightarrow Q \in \left( {MNP} \right).\]
Mà \[Q \in SD\]. Suy ra \(Q\) là giao điểm của \(SD\) và mặt phẳng \(\left( {MNP} \right)\).
Chứng minh được \[I\]là trung điểm \[SO\] nên \[PI\] là đường trung bình tam giác \[SBO\].
Suy ra \[PI{\rm{//}}SB\] hay \[PQ{\rm{//}}SB\].
Xét tam giác SBD có \[PQ{\rm{//}}SB\] nên \(\frac{{SQ}}{{SD}} = \frac{{BP}}{{BD}} = \frac{1}{4}\).
Câu 2
A. \(BC{\rm{//}}\left( {SAD} \right)\).
Lời giải
Ta có \(BC\,{\rm{//}}\,AD\) nên \(BC{\rm{//}}\left( {SAD} \right)\) và \(AD{\rm{//}}\left( {SBC} \right)\), vậy đáp án A và đáp án D đúng.
Lại có \(CD\,{\rm{//}}\,AB\) nên \(CD{\rm{//}}\left( {SAB} \right)\), vậy đáp án B đúng.
Vì \[\left\{ \begin{array}{l}S \in SA\\S \in \left( {SCD} \right)\end{array} \right. \Rightarrow SA \cap \left( {SCD} \right) = S\], vậy đáp án C sai. Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

