Câu hỏi:

17/10/2025 179 Lưu

Biết \(\cos a = \frac{1}{3}\), \(\cos b = \frac{1}{4}\). Giá trị \[\cos \left( {a + b} \right) \cdot \cos \left( {a - b} \right)\] bằng     

A. \[ - \frac{{113}}{{144}}.\]                                       
B. \[ - \frac{{115}}{{144}}.\]            
C. \[ - \frac{{117}}{{144}}.\]            
D. \[ - \frac{{119}}{{144}}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \[\cos \left( {a + b} \right) \cdot \cos \left( {a - b} \right) = \frac{1}{2}\left[ {\cos 2a + \cos 2b} \right]\].

\(\cos 2a = 2{\cos ^2}a - 1 = - \frac{7}{9}\); \(\cos 2b = 2{\cos ^2}b - 1 = - \frac{7}{8}\).

Do đó \[\cos \left( {a + b} \right) \cdot \cos \left( {a - b} \right) = \frac{1}{2}\left[ {\cos 2a + \cos 2b} \right] = \frac{1}{2}\left( { - \frac{7}{9} - \frac{7}{8}} \right) = - \frac{{119}}{{144}}\]. Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình b (ảnh 1)

a) Ta có \[MN\] là đường trung bình tam giác \[SAC\].

Suy ra \[MN\,{\rm{//}}\,AC\].

Do đó: \[\left\{ \begin{array}{l}MN{\rm{//}}AC\\MN \not\subset \left( {ABCD} \right);AC \subset \left( {ABCD} \right)\end{array} \right. \Rightarrow MN{\rm{//}}\left( {ABCD} \right).\]

b) Gọi \[I\] là giao điểm của \[MN\]\[SO\].

\(Q\) là giao điểm của \[PI\]\[SD\].

Ta có \[Q \in PI,PI \subset \left( {MNP} \right) \Rightarrow Q \in \left( {MNP} \right).\]

\[Q \in SD\]. Suy ra \(Q\) là giao điểm của \(SD\) và mặt phẳng \(\left( {MNP} \right)\).

Chứng minh được \[I\]là trung điểm \[SO\] nên \[PI\]đường trung bình tam giác \[SBO\].

Suy ra \[PI{\rm{//}}SB\] hay \[PQ{\rm{//}}SB\].

Xét tam giác SBD\[PQ{\rm{//}}SB\] nên \(\frac{{SQ}}{{SD}} = \frac{{BP}}{{BD}} = \frac{1}{4}\).

Câu 2

A. \(BC{\rm{//}}\left( {SAD} \right)\).                           

B. \(CD{\rm{//}}\left( {SAB} \right)\).                               
C. \(SA{\rm{//}}\left( {SCD} \right)\).                                
D. \(AD{\rm{//}}\left( {SBC} \right)\).

Lời giải

Ta có \(BC\,{\rm{//}}\,AD\) nên \(BC{\rm{//}}\left( {SAD} \right)\)\(AD{\rm{//}}\left( {SBC} \right)\), vậy đáp án A và đáp án D đúng.

Lại có \(CD\,{\rm{//}}\,AB\) nên \(CD{\rm{//}}\left( {SAB} \right)\), vậy đáp án B đúng.

\[\left\{ \begin{array}{l}S \in SA\\S \in \left( {SCD} \right)\end{array} \right. \Rightarrow SA \cap \left( {SCD} \right) = S\], vậy đáp án C sai. Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP