Câu hỏi:

18/10/2025 50 Lưu

Biến đổi thành tổng biểu thức \(P = 4\sin 3x\sin 2x\cos x\) ta được

\(P = a\cos 2x + b\cos 4x + c\cos 6x + d\).

Tính \(a + b + c + d\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(4\sin 3x\sin 2x\cos x = 4\left( {\sin 3x\cos x} \right)\sin 2x = 4 \cdot \frac{1}{2}\left( {\sin 4x + \sin 2x} \right)\sin 2x\)

            \( = 2\sin 4x\sin 2x + 2{\sin ^2}2x = \left( {\cos 2x - \cos 6x} \right) + 2\left( {\frac{{1 - \cos 4x}}{2}} \right)\) \( = \cos 2x - \cos 4x - \cos 6x + 1\).

Vậy \(a + b + c + d = 0\).

Đáp án: 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(d = - 2\).                    
B. \(d = 1\).                       
C. \(d = 3\).                                          
D. \(d = 2\).

Lời giải

Ta có \({u_1} = 5 - 2 \cdot 1 = 3;\,\,{u_2} = 5 - 2 \cdot 2 = 1;\,\,{u_3} = 5 - 2 \cdot 3 = - 1;\,\,...........\)

Khi đó, công sai của cấp số cộng là \(d = {u_2} - {u_1} = 1 - 3 = - 2\). Chọn A.

Lời giải

Cho hình chóp \(S.ABCD,\) \(ABCD\) là hình (ảnh 1)

a) Xét hai mặt phẳng \(\left( {MBC} \right)\)\(\left( {SAD} \right)\)zCY|

\(M\) là điểm chung, \(BC{\rm{ // }}AD,\) \(BC \subset \left( {MBC} \right),\) \(AD \subset \left( {SAD} \right).\)

Vậy giao tuyến của \(\left( {MBC} \right)\)\(\left( {SAD} \right)\) là đường thẳng \(Mx\) song song với \(BC\)\(AD.\)

b) Do \(BC{\rm{ // }}AD\) nên \(\Delta GBC\)\(\Delta GDA\) đồng dạng (góc – góc).

Suy ra|P|B|0|4|8| \(\frac{{DG}}{{GB}} = \frac{{AD}}{{BC}} = \frac{2}{1} \Rightarrow \frac{{DG}}{{DB}} = \frac{2}{3}.\)

Do \(DE\) là trung tuyến của \(\Delta SAD\)\(M\) là trọng tâm \(\Delta SAD\) nên ta có tỉ số \(\frac{{DM}}{{DE}} = \frac{2}{3}.\)

Khi đó, xét trong tam giác \(DEB\) có: \(\frac{{DM}}{{DE}} = \frac{{DG}}{{DB}} = \frac{2}{3} \Rightarrow MG{\rm{ // }}BE.\)

\(BE \subset \left( {SAB} \right)\) nên \(MG{\rm{ // }}\left( {SAB} \right)\).

Câu 3

A. \(M,N,K,C\).                
B. \(M,N,K,E\).                
C. \(M,K,A,C\).                          
D. \(M,N,A,C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP