Câu hỏi:

19/10/2025 65 Lưu

Phần I. Câu trắc nghiệm nhiều phương án lựa chọn. Học sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi, học sinh chỉ chọn một phương án

Đường cong dưới đây là đồ thị hàm số của hàm số nào trong các đáp án A, B, C, D?

Đường cong dưới đây là đồ thị hàm số của hàm số nào trong các đáp án A, B, C, D? (ảnh 1)

A. \[y = \sin x.\]      
B. \[y = \cos x.\]              
C. \[y = \tan x.\]                           
D. \[y = \cot x.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Đồ thị đối xứng qua trục \[Oy\] nên đó là hàm số \[y = \cos x.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho hình chóp \[S.ABCD\] có đáy là hình bình hành. \[M\]là trung điểm của \[SC\]. Gọi \[I\] là giao điểm của đường thẳng \[AM\] với mặt phẳng \[\left( {SBD} \right)\]. Tính tỉ số \[\frac{{IA}}{{IM}}\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: 2

Gọi \[O\] là tâm hình bình hành \[ABCD.\]

Ta có: \[I = AM \cap \left( {SBD} \right) = AM \cap SO.\]

Xét tam giác \[SAC\], có \[AM\] và \[SO\] là hai đường trung tuyến của tam giác.

Mà \[AM \cap SO = I\] nên \[I\] là trọng tâm của tam giác \[SAC\].

Do đó, \[\frac{{IA}}{{IM}} = 2.\]

Cho hình chóp \[S.ABCD\] có đáy là hình bình hành. \[M\]là trung điểm của \[SC\]. Gọi \[I\] là giao điểm của đường thẳng \[AM\] với mặt phẳng \[\left( {SBD} \right)\]. Tính tỉ số \[\frac{{IA}}{{IM}}\]. (ảnh 1)

Lời giải

Hướng dẫn giải

a) Đ

b) S

c) Đ

d) Đ

 

Ta có: \[\left\{ \begin{array}{l}{u_1} + {u_7} = 26\\u_2^2 + u_6^2 = 466\end{array} \right.\]

      \[ \Leftrightarrow \left\{ \begin{array}{l}{u_1} + {u_1} + 6d = 26\\{\left( {{u_1} + d} \right)^2} + {\left( {{u_1} + 5d} \right)^2} = 466\end{array} \right.\]

      \[ \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 6d = 26\\2u_1^2 + 12{u_1}d + 26{d^2} = 466\end{array} \right.\]

      \[ \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 13 - 3d\\u_1^2 + 6{u_1}d + 13{d^2} = 233\end{array} \right.\]

Thay \[{u_1} = 13 - 3d\] vào phương trình \[u_1^2 + 6{u_1}d + 13{d^2} = 233\], ta được:

\[{\left( {13 - 3d} \right)^2} + 6\left( {13 - 3d} \right)d + 13{d^2} = 233\]

\[ \Leftrightarrow 169 - 78d + 9{d^2} + 78d - 18{d^2} + 13{d^2} - 233 = 0\]

\[ \Leftrightarrow 4{d^2} - 64 = 0\]\[ \Leftrightarrow {d^2} = 16\]

Do \[d < 0\] nên \[d = - 4\].

Suy ra \[{u_1} = 13 - 3 \cdot \left( { - 4} \right) = 13 + 12 = 25\].

Vậy cấp số cộng \[\left( {{u_n}} \right)\] có số hạng \[{u_1} = 25\] và công sai \[d = - 4\].

Ta có: \[{u_{10}} = {u_1} + 9d = 25 + 9.\left( { - 4} \right) = - 11.\]

           \[{u_{2024}} = {u_1} + 2023d = 25 + 2023.\left( { - 4} \right) = - 8067.\]

Câu 3

A. \[ - 300^\circ .\] 
B. \[510^\circ .\]             
C. \[60^\circ .\]                             
D. \[ - 420^\circ .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hình chóp \[S.ABCD\], biết \[AB\] cắt \[CD\] tại \[E\], \[AC\] cắt \[BD\] tại \[F\] trong mặt phẳng đáy. Xét tính đúng sai của các khẳng định sau:

a) Đường thẳng \[FE\] nằm trong mặt phẳng \[\left( {ABCD} \right).\]

b) \[AB\] là giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\]\[\left( {ABCD} \right).\]

c) \[SF\] là giao điểm của hai mặt phẳng \[\left( {SAB} \right)\]\[\left( {SCD} \right)\], \[SE\] là giao tuyến của hai mặt phẳng \[\left( {SAC} \right)\]\[\left( {SBD} \right).\]

d) Gọi \[G = FE \cap AD\]. Khi đó, \[SG\] là giao tuyến của mặt phẳng \[\left( {SFE} \right)\] và mặt phẳng \[\left( {SAD} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\frac{1}{5}.\]   
B. \[\frac{3}{5}.\]            
C. \[ - \frac{3}{5}.\]           
D. \[\frac{4}{5}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP