Phần II. Câu trắc nghiệm đúng sai. Học sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu hỏi, học sinh chọn Đúng hoặc Sai.
Cho phương trình lượng giác \[\sin \left( {3x + \frac{\pi }{3}} \right) = - \frac{{\sqrt 3 }}{2}\]. Khi đó:
a) Phương trình có nghiệm \[\left[ \begin{array}{l}x = - \frac{\pi }{9} + k\frac{{2\pi }}{3}\\x = \frac{\pi }{3} + k\frac{{2\pi }}{3}\end{array} \right.,{\rm{ }}k \in \mathbb{Z}.\]
b) Phương trình có nghiệm âm lớn nhất là \[ - \frac{{2\pi }}{9}.\]
c) Trên khoảng \[\left( {0;\frac{\pi }{2}} \right)\] phương trình đã cho có 3 nghiệm.
d) Tổng các nghiệm của phương trình trong khoảng \[\left( {0;\frac{\pi }{2}} \right)\] là \[\frac{{7\pi }}{9}.\]
Phần II. Câu trắc nghiệm đúng sai. Học sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu hỏi, học sinh chọn Đúng hoặc Sai.
Cho phương trình lượng giác \[\sin \left( {3x + \frac{\pi }{3}} \right) = - \frac{{\sqrt 3 }}{2}\]. Khi đó:
a) Phương trình có nghiệm \[\left[ \begin{array}{l}x = - \frac{\pi }{9} + k\frac{{2\pi }}{3}\\x = \frac{\pi }{3} + k\frac{{2\pi }}{3}\end{array} \right.,{\rm{ }}k \in \mathbb{Z}.\]
b) Phương trình có nghiệm âm lớn nhất là \[ - \frac{{2\pi }}{9}.\]
c) Trên khoảng \[\left( {0;\frac{\pi }{2}} \right)\] phương trình đã cho có 3 nghiệm.
d) Tổng các nghiệm của phương trình trong khoảng \[\left( {0;\frac{\pi }{2}} \right)\] là \[\frac{{7\pi }}{9}.\]
Quảng cáo
Trả lời:

Hướng dẫn giải
a) S |
b) Đ |
c) S |
d) Đ |
a) Ta có: \[\sin \left( {3x + \frac{\pi }{3}} \right) = - \frac{{\sqrt 3 }}{2}\]
\[ \Leftrightarrow \sin \left( {3x + \frac{\pi }{3}} \right) = \sin \left( { - \frac{\pi }{3}} \right)\]
\[ \Leftrightarrow \left[ \begin{array}{l}3x + \frac{\pi }{3} = - \frac{\pi }{3} + k2\pi \\3x + \frac{\pi }{3} = \pi - \left( { - \frac{\pi }{3}} \right) + k2\pi \end{array} \right.,k \in \mathbb{Z}.\]
\[ \Leftrightarrow \left[ \begin{array}{l}x = - \frac{{2\pi }}{9} + k\frac{{2\pi }}{3}\\x = \frac{\pi }{3} + k\frac{{2\pi }}{3}\end{array} \right.,k \in \mathbb{Z}.\]
b) Tìm nghiệm âm lớn nhất của phương trình, ta có:
Với \[ - \frac{{2\pi }}{9} + k\frac{{2\pi }}{3} < 0\] khi \[k < \frac{1}{3}\], mà \[k \in \mathbb{Z}\] nên \[{k_{\max }} = 0\]. Khi đó, \[x = - \frac{{2\pi }}{9}\] (1)
Với \[\frac{\pi }{3} + k\frac{{2\pi }}{3} < 0\] khi \[k < - \frac{1}{2}\] mà \[k \in \mathbb{Z}\] nên \[{k_{\max }} = - 1\]. Khi đó, \[x = - \frac{\pi }{3}\] (2)
So sánh (1) và (2), ta suy ra \[x = - \frac{{2\pi }}{9}\] là nghiệm âm lớn nhất của phương trình.
c) Với \[0 < - \frac{{2\pi }}{9} + k\frac{{2\pi }}{3} < \frac{\pi }{2}\] thì \[\frac{1}{3} < k < \frac{{13}}{{12}}\]. Mà \[k \in \mathbb{Z}\] nên \[k = 1\].
Do đó, \[x = \frac{{4\pi }}{9}\].
Với \[0 < \frac{\pi }{3} + k\frac{{2\pi }}{3} < \frac{\pi }{2}\] thì \[ - \frac{1}{2} < k < \frac{1}{4}\]. Mà \[k \in \mathbb{Z}\] nên \[k = 0.\]
Do đó, \[x = \frac{\pi }{3}\].
Vậy phương trình có 2 nghiệm trong khoảng \[\left( {0;\frac{\pi }{2}} \right)\].
d) Tổng các nghiệm của phương trình trong khoảng \[\left( {0;\frac{\pi }{2}} \right)\] là \[\frac{{4\pi }}{9} + \frac{\pi }{3} = \frac{{7\pi }}{9}.\]
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: 2
Gọi \[O\] là tâm hình bình hành \[ABCD.\] Ta có: \[I = AM \cap \left( {SBD} \right) = AM \cap SO.\] Xét tam giác \[SAC\], có \[AM\] và \[SO\] là hai đường trung tuyến của tam giác. Mà \[AM \cap SO = I\] nên \[I\] là trọng tâm của tam giác \[SAC\]. Do đó, \[\frac{{IA}}{{IM}} = 2.\] |
![]() |
Câu 2
Xác định số đo của góc lượng giác \[\left( {Ou,Ov} \right)\] được biểu diễn trong hình bên dưới đây.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Ta có: \[\left( {Ou,Ov} \right) = - \left( {360^\circ - 60^\circ } \right) = - 300^\circ \].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.