Câu hỏi:

19/10/2025 8 Lưu

Ban đầu có bốn triệu con vi khuẩn trong phòng thí nghiệm, người ta cho vào đám vi khuẩn đó một chất kháng khuẩn thì số lượng vi khuẩn giảm đi một nửa so với trước đó sau mỗi 6 giờ. Vậy sau 24 giờ số lượng vi khuẩn còn lại là bao nhiêu? (đơn vị: nghìn con).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: 250

Số lượng vi khuẩn ban đầu là \[{S_0} = {4.10^6}\].

Sau 6 giờ số lượng vi khuẩn còn lại bằng một nửa so với trước đó.

Do đó, sau \[6t\] giờ số lượng vi khuẩn còn lại là số hạng thứ \[t\] của một cấp số nhân với \[{u_1} = {S_0} = {4.10^6}\] và công bội là \[q = \frac{1}{2}\].

Vậy sau 24 giờ ta được \[t = 4\], suy ra \[S = {4.10^6}.{\left( {\frac{1}{2}} \right)^4} = 250\] (nghìn con).

Vậy sau 24 giờ số lượng vi khuẩn còn lại là \[250\] nghìn con.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho hình chóp \[S.ABCD\] có đáy là hình bình hành. \[M\]là trung điểm của \[SC\]. Gọi \[I\] là giao điểm của đường thẳng \[AM\] với mặt phẳng \[\left( {SBD} \right)\]. Tính tỉ số \[\frac{{IA}}{{IM}}\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: 2

Gọi \[O\] là tâm hình bình hành \[ABCD.\]

Ta có: \[I = AM \cap \left( {SBD} \right) = AM \cap SO.\]

Xét tam giác \[SAC\], có \[AM\] và \[SO\] là hai đường trung tuyến của tam giác.

Mà \[AM \cap SO = I\] nên \[I\] là trọng tâm của tam giác \[SAC\].

Do đó, \[\frac{{IA}}{{IM}} = 2.\]

Cho hình chóp \[S.ABCD\] có đáy là hình bình hành. \[M\]là trung điểm của \[SC\]. Gọi \[I\] là giao điểm của đường thẳng \[AM\] với mặt phẳng \[\left( {SBD} \right)\]. Tính tỉ số \[\frac{{IA}}{{IM}}\]. (ảnh 1)

Câu 2

A. \[{S_{10}} = 110.\]                                     
B. \[{S_{10}} = 100.\]                       
C. \[{S_{10}} = 21.\]       
D. \[{S_{10}} = 19.\]

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Tổng 10 số hạng đầu tiên là: \[{S_{10}} = \frac{{\left[ {2{u_1} + 9d} \right].10}}{2} = \frac{{\left[ {2.1 + 9.2} \right].10}}{2} = 100.\]

Câu 3

A. \[\frac{1}{5}.\]   
B. \[\frac{3}{5}.\]            
C. \[ - \frac{3}{5}.\]           
D. \[\frac{4}{5}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[ - 300^\circ .\] 
B. \[510^\circ .\]             
C. \[60^\circ .\]                             
D. \[ - 420^\circ .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}.\]                             
B. \[D = \mathbb{R}\backslash \left\{ {k\pi |k \in \mathbb{Z}} \right\}.\]
C. \[D = \mathbb{R}\backslash \left\{ {k2\pi |k \in \mathbb{Z}} \right\}.\]                                  
D. \[D = \mathbb{R}\backslash \left\{ {\frac{{k\pi }}{2}|k \in \mathbb{Z}} \right\}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[6.\]                    
B. \[ - 6.\]                         
C. \[1.\]                         
D. \[ - 18.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = \frac{{2\pi }}{3} + k2\pi \end{array} \right.,{\rm{ }}k \in \mathbb{Z}.\]                                                 
B. \[\left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi \\x = \frac{{5\pi }}{6} + k2\pi \end{array} \right.,{\rm{ }}k \in \mathbb{Z}.\]
C. \[x = \pm \frac{\pi }{6} + k2\pi ,{\rm{ }}k \in \mathbb{Z}.\]                                                 
D. \[x = \pm \frac{\pi }{2} + k2\pi ,{\rm{ }}k \in \mathbb{Z}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP