Gọi \[S\] là tập các giá trị nguyên của \[x\] thỏa mãn biểu thức \(\sqrt x < 7\). Số phần tử của tập \[S\] là
Quảng cáo
Trả lời:

Chọn C
Ta có: \[\sqrt x < 7\] nên \[{\left( {\sqrt x } \right)^2} < {7^2}\] hay \[x < 49\].
Vì \[x\] nguyên và \[x \ge 0\] nên \[S = \left\{ {0\,;\,\,1\,;\,\,2\,;\,\, \ldots \,;\,\,48} \right\}\].
Do đó, tập \[S\] có 49 phần tử.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Thay \(d = 35\) vào công thức \(d = 7\sqrt {t - 12} \), ta được:
\(7\sqrt {t - 12} = 35\)
\(\sqrt {t - 12} = 5\)
\(t - 12 = 25\)
\(t = 37\) (năm)
Vậy băng tan cách đó: \(37 + 12 = 49\) (năm).
Đáp án: 49.
Câu 2
Lời giải
Chọn D
Điều kiện xác định:
\(\left\{ \begin{array}{l}x \ge 1\\x - 2\sqrt {x - 1} \ge 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}x \ge 1\\\left( {x - 1} \right) - 2\sqrt {x - 1} + 1 \ge 0\end{array} \right.\) nên \(\left\{ \begin{array}{l}x \ge 1\\{\left( {\sqrt {x - 1} - 1} \right)^2} \ge 0\end{array} \right.\), do đó \(x \ge 1.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.