Câu hỏi:

22/10/2025 73 Lưu

Phần 1. (3,0 điểm) Câu trắc nghiệm nhiều phương án lựa chọn

Trong mỗi câu hỏi từ câu 1 đến câu 12, hãy viết chữ cái in hoa đứng trước phương án đúng duy nhất vào bài làm.

Biểu thức nào sau đây có điều kiện xác định là \(x \ge 0,x \ne 9\)?

A. \(\frac{{3\sqrt x + 5}}{{\sqrt x - 3}}.\)                            
B. \(\frac{{2 - 5\sqrt x }}{{4 - x}}.\)            
C. \(\frac{{\sqrt x - 1}}{{\sqrt x + 3}}.\)                                
D. \(2\sqrt x \left( {x - 6\sqrt x + 9} \right).\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Biểu thức \(\frac{{3\sqrt x + 5}}{{\sqrt x - 3}}\) có điều kiện xác định là \(x \ge 0\)\(\sqrt x - 3 \ne 0\).

Suy ra \(\sqrt x \ne 3\) nên \(x \ne 9.\)

Do đó, điều kiện xác định của biểu thức \(\frac{{3\sqrt x + 5}}{{\sqrt x - 3}}\)\(x \ge 0\)\(x \ne 9\).

Biểu thức \(\frac{{2 - 5\sqrt x }}{{4 - x}}\) có điều kiện xác định là: \(x \ge 0\)\(4 - x \ne 0\) hay \(x \ge 0\)\(x \ne 4.\)

Biểu thức \(\frac{{\sqrt x - 1}}{{\sqrt x + 3}}\) có điều kiện xác định là \(x \ge 0.\)

Biểu thức \(2\sqrt x \left( {x - 6\sqrt x + 9} \right)\) có điều kiện xác định là \(x \ge 0.\)

Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Coi các sân đó là hình vuông \[ABCD\], phần lát gạch đỏ trang trí là hình vuông \[MNPQ\].

Ta chứng minh được \[\Delta AMQ = \Delta BNM = \Delta CPN = \Delta DQP\] (c.c.c)

Diện tích hình vuông \[MNPQ\] có diện tích nhỏ nhất khi tổng diện tích bốn tam giác vuông ở bốn góc hình vuông \[ABCD\] là lớn nhất.

Gọi \[S = {S_{\Delta AMQ}} + {S_{\Delta BNM}} + {S_{\Delta CPN}} + {S_{\Delta DQP}} = 4{S_{\Delta AMQ}} = 4 \cdot \frac{1}{2}AM \cdot AQ = 2 \cdot AM \cdot AQ\]

\[AM + AQ = AM + MB = 16\,\,\left( {\rm{m}} \right)\].

Lại có \[{\left( {AM - MB} \right)^2} \ge 0\]

Suy ra \[A{M^2} + M{B^2} \ge 2MA \cdot MB\]

Do đó, \[A{M^2} + 2MA \cdot MB + M{B^2} \ge 4MA \cdot MB\]

             \[{\left( {MA + MB} \right)^2} \ge 4MA \cdot MB\]

Suy ra \[2MA \cdot MB \le \frac{{{{\left( {MA + MB} \right)}^2}}}{2} = \frac{{{{16}^2}}}{2} = 128\] hay \[S \le 128\].

Dấu “=” xảy ra khi \[MA = MB = \frac{{AB}}{2} = 8{\rm{ }}\left( {\rm{m}} \right)\].

Khi đó, \[M,\,N,\,P,\,Q\] lần lượt là trung điểm của các cạnh \[AB,\,BC,\,CD,\,DA.\]

Vậy khi \[M,\,N,\,P,\,Q\] lần lượt là trung điểm của các cạnh \[AB,\,BC,\,CD,\,DA\] thì diện tích hình vuông \[MNPQ\] nhỏ nhất.

Lời giải

Hướng dẫn giải

a) Chứng minh rằng \[OD \bo (ảnh 1)

a) Xét \[\Delta OBC\] cân tại \[O\] (do \[OC = OB = R\]) nên đường trung tuyến \[OK\] cũng là đường cao của \[\Delta OBC.\] Suy ra \[OK \bot BC\] hay \[OD \bot BC\].

Xét nửa đường tròn \(\left( O \right)\) đường kính \(AB,\)\[\widehat {ACB}\] là góc nội tiếp chắn nửa đường tròn nên \[\widehat {ACB} = 90^\circ .\]

Vậy \[\Delta ABC\] vuông tại \[C\].

b) Xét \[\Delta OBC\] cân tại \[O\] (do \[OC = OB = R\]) nên đường trung tuyến \[OK\] cũng là đường phân giác của \[\Delta OBC.\] Do đó \(\widehat {BOD} = \widehat {COD}.\)

Xét \[\Delta CDO\]\[\Delta BDO\] có:

\[OD\] là cạnh chung; \(\widehat {BOD} = \widehat {COD}\); \[OB = OC\]

Do đó \[\Delta CDO = \Delta BDO\] (c.g.c).

Suy ra \[\widehat {DCO} = \widehat {DBO} = 90^\circ \] (hai góc tương ứng).

Như vậy, \[OC \bot DC\] tại \[C\] thuộc \(\left( O \right)\) hay \[DC\] là tiếp tuyến của đường tròn \[\left( O \right)\].

c) Gọi \[F\] là giao điểm của \[BC,\,\,AE.\]

Ta có: \[IC \bot AB\]\[AF \bot AB\], suy ra \[IC\,{\rm{//}}\,AF\] hay \[IC\,{\rm{//}}\,EF\].

Xét \[\Delta BEF\], có: \[\frac{{IC}}{{EF}} = \frac{{IB}}{{EB}}\] (Hệ quả định lí Thalès) (1)

Xét \[\Delta BAE\], có: \[\frac{{IH}}{{AE}} = \frac{{IB}}{{EB}}\] (Hệ quả định lí Thalès) (2)

Từ (1) và (2) suy ra \[\frac{{IC}}{{EF}} = \frac{{IH}}{{EA}}\], mà \[IC = IH\] (do \(I\) là trung điểm của \(CH)\) nên \[EF = EA\] hay \[E\] là trung điểm của \[AF.\]

Ta có \[\widehat {FCA} = 90^\circ \] (cùng bù với \[\widehat {ACB} = 90^\circ \]) nên \[\Delta FCA\] vuông tại \[C\].

 

Xét \(\Delta ACF\) vuông tại \(C,\)\(CE\) là đường trung tuyến ứng với cạnh huyền \(AF\) nên \[CE = EA = EF = \frac{1}{2}AF.\]

Xét \[\Delta CEO\]\[\Delta AEO\], có:

\[CE = AE\], \[OC = OA\]\[OE\] là cạnh chung

Do đó \[\Delta CEO = \Delta AEO\] (c.c.c)

Suy ra \[\widehat {ECO} = \widehat {EAO} = 90^\circ \] (hai góc tương ứng).

Ta có: \[\widehat {ECO} + \widehat {OCD} = 90^\circ + 90^\circ = 180^\circ \] hay \[\widehat {ECD} = 180^\circ \].

Vậy ba điểm \[E,C,D\] thẳng hàng.

a) Chứng minh rằng \[OD \bo (ảnh 2)

 

Câu 6

A. \({x^2} + 3y = 4.\)                              
B. \(x - 3{y^2} = 5.\)                                
C. \(x + \frac{1}{y} = 2.\)                       
D. \(2x - y = 3.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP