Câu hỏi:

22/10/2025 112 Lưu

Trên nóc của một tòa nhà có một cột ăng – ten cao \(5{\rm{ m}}\). Từ vị trí quan sát \(A\) cao \(7{\rm{ m}}\) so với mặt đất, có thể nhìn thấy đỉnh \(B\) và đỉnh \(C\) của một cột ăng – ten dưới góc \(50^\circ \) và \(40^\circ \) so với phương nằm ngang.

Trên nóc của một tòa nhà có một cột ăng – ten cao \(5{\rm{ m}}\). Từ vị (ảnh 1)

a) \(CE = AE.\tan 40^\circ .\)

b) \(BE = AE.\tan 50^\circ .\)

c) \(AE = \frac{{BC}}{{\tan 40^\circ  + \tan 50^\circ }}\).

d) Chiều cao của tòa nhà lớn hơn 24 m.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: a) Đúng.            b) Đúng.            c) Sai.                  d) Sai.

• Chiều cao của tòa nhà chính là độ dài đoạn thẳng \(BH\).

Xét tam giác \(CAE\) vuông tại \(E\), ta có:

\(CE = AE.\tan \widehat {CAE} = AE.\tan 40^\circ {\rm{ }}\left( {\rm{m}} \right)\) (1).

Do đó, ý a) là đúng.

• Xét tam giác \(BAE\) vuông ở \(E\), ta có:

\(BE = AE.\tan \widehat {BAE} = AE.\tan 50^\circ {\rm{ }}\left( {\rm{m}} \right)\) (2).

Do đó, ý b) là đúng.

• Từ (1) và (2) suy ra \(BC = BE - CE = AE\tan 50^\circ  - AE\tan 40^\circ \)

                                \(BC = AE\left( {\tan 50^\circ  - \tan 40^\circ } \right)\)

                                \(5 = AE\left( {\tan 50^\circ  - \tan 40^\circ } \right)\)

                               \(AE = \frac{5}{{\tan 50^\circ  - \tan 40^\circ }}{\rm{ }}\left( {\rm{m}} \right)\).

Do đó, ý c) là sai.

• Với \(AE = \frac{5}{{\tan 50^\circ  - \tan 40^\circ }}\) suy ra \(CE = AE \cdot \tan \widehat {CAE} = \frac{5}{{\tan 50^\circ  - \tan 40^\circ }} \cdot \tan 40^\circ  \approx 11,9{\rm{ }}\left( {\rm{m}} \right){\rm{.}}\)

Chiều cao của tòa nhà là: \(5 + 11,9 + 7 \approx 23,9{\rm{ }}\left( {\rm{m}} \right)\).

Vậy tòa nhà cao \(23,9{\rm{ }}\left( {\rm{m}} \right)\).

Do đó, ý d) là sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

    a) Với \(a > 0,{\rm{ }}a \ne 1\), ta có:

\[A = \left( {\frac{{\sqrt a }}{2} - \frac{1}{{2\sqrt a }}} \right)\left( {\frac{{a - \sqrt a }}{{\sqrt a + 1}} - \frac{{a + \sqrt a }}{{\sqrt a - 1}}} \right)\]

   \[ = \left( {\frac{a}{{2\sqrt a }} - \frac{1}{{2\sqrt a }}} \right)\left[ {\frac{{\left( {\sqrt a - 1} \right)\sqrt a }}{{\sqrt a + 1}} - \frac{{\left( {\sqrt a + 1} \right)\sqrt a }}{{\sqrt a - 1}}} \right]\]

\[ = \frac{{a - 1}}{{2\sqrt a }}\left[ {\frac{{{{\left( {\sqrt a - 1} \right)}^2}\sqrt a }}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}} - \frac{{{{\left( {\sqrt a + 1} \right)}^2}\sqrt a }}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}} \right]\]

\[ = \frac{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}{{2\sqrt a }} \cdot \frac{{{{\left( {\sqrt a - 1} \right)}^2}\sqrt a - {{\left( {\sqrt a + 1} \right)}^2}\sqrt a }}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}\]

\[ = \frac{{{{\left( {\sqrt a - 1} \right)}^2}\sqrt a - {{\left( {\sqrt a + 1} \right)}^2}\sqrt a }}{{2\sqrt a }}\]

 \[ = \frac{{\left( {a - 2\sqrt a + 1} \right)\sqrt a - \left( {a + 2\sqrt a + 1} \right)\sqrt a }}{{2\sqrt a }}\]

\[ = \frac{{a\sqrt a - 2a + \sqrt a - a\sqrt a - 2a - \sqrt a }}{{2\sqrt a }}\]

\[ = \frac{{ - 4a}}{{2\sqrt a }}\]

\[ = - 2\sqrt a \].

Vậy \[A = - 2\sqrt a \] với \(a > 0,{\rm{ }}a \ne 1\).

b) Ta có: \(\left| {a - 1} \right| = 1\) suy ra \(a - 1 = 1\) hoặc \(a - 1 = - 1\).

Suy ra \(a = 2\) (thỏa mãn) hoặc \(a = 0\) (loại).

Thay \(a = 2\) vào \[A = - 2\sqrt a \] được \[A = - 2\sqrt 2 \].

Lời giải

Hướng dẫn giải

Đáp án: 62,8

Diện tích hình vành khuyên đó là: \(S = \pi \left( {{6^2} - {4^2}} \right) = 20\pi \approx 62,8{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP