Câu hỏi:

22/10/2025 108 Lưu

Hai đường tròn chỉ có một điểm chung được gọi là hai đường tròn

A. Cắt nhau.                  
B. Tiếp xúc nhau.         
C. Ngoài nhau.             
D. Không xác định.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Hai đường tròn chỉ có một điểm chung được gọi là hai đường tròn tiếp xúc nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

    a) Với \(a > 0,{\rm{ }}a \ne 1\), ta có:

\[A = \left( {\frac{{\sqrt a }}{2} - \frac{1}{{2\sqrt a }}} \right)\left( {\frac{{a - \sqrt a }}{{\sqrt a + 1}} - \frac{{a + \sqrt a }}{{\sqrt a - 1}}} \right)\]

   \[ = \left( {\frac{a}{{2\sqrt a }} - \frac{1}{{2\sqrt a }}} \right)\left[ {\frac{{\left( {\sqrt a - 1} \right)\sqrt a }}{{\sqrt a + 1}} - \frac{{\left( {\sqrt a + 1} \right)\sqrt a }}{{\sqrt a - 1}}} \right]\]

\[ = \frac{{a - 1}}{{2\sqrt a }}\left[ {\frac{{{{\left( {\sqrt a - 1} \right)}^2}\sqrt a }}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}} - \frac{{{{\left( {\sqrt a + 1} \right)}^2}\sqrt a }}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}} \right]\]

\[ = \frac{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}{{2\sqrt a }} \cdot \frac{{{{\left( {\sqrt a - 1} \right)}^2}\sqrt a - {{\left( {\sqrt a + 1} \right)}^2}\sqrt a }}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}\]

\[ = \frac{{{{\left( {\sqrt a - 1} \right)}^2}\sqrt a - {{\left( {\sqrt a + 1} \right)}^2}\sqrt a }}{{2\sqrt a }}\]

 \[ = \frac{{\left( {a - 2\sqrt a + 1} \right)\sqrt a - \left( {a + 2\sqrt a + 1} \right)\sqrt a }}{{2\sqrt a }}\]

\[ = \frac{{a\sqrt a - 2a + \sqrt a - a\sqrt a - 2a - \sqrt a }}{{2\sqrt a }}\]

\[ = \frac{{ - 4a}}{{2\sqrt a }}\]

\[ = - 2\sqrt a \].

Vậy \[A = - 2\sqrt a \] với \(a > 0,{\rm{ }}a \ne 1\).

b) Ta có: \(\left| {a - 1} \right| = 1\) suy ra \(a - 1 = 1\) hoặc \(a - 1 = - 1\).

Suy ra \(a = 2\) (thỏa mãn) hoặc \(a = 0\) (loại).

Thay \(a = 2\) vào \[A = - 2\sqrt a \] được \[A = - 2\sqrt 2 \].

Lời giải

Hướng dẫn giải

Đáp án: 62,8

Diện tích hình vành khuyên đó là: \(S = \pi \left( {{6^2} - {4^2}} \right) = 20\pi \approx 62,8{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP