Một chiếc thang có chiều dài từ chân lên đến nấc thang cuối là \[5\,\,{\rm{m}}\] được đặt vào thân cây cau như hình vẽ dưới đây, người ta đo được khoảng cách từ chân thang đến gốc cây cau là \[2,5\,\,{\rm{m}}{\rm{.}}\] Hỏi số đo góc \[\alpha \] tạo bởi thang và thân cây cau là bao nhiêu? (làm tròn kết quả đến độ).

Một chiếc thang có chiều dài từ chân lên đến nấc thang cuối là \[5\,\,{\rm{m}}\] được đặt vào thân cây cau như hình vẽ dưới đây, người ta đo được khoảng cách từ chân thang đến gốc cây cau là \[2,5\,\,{\rm{m}}{\rm{.}}\] Hỏi số đo góc \[\alpha \] tạo bởi thang và thân cây cau là bao nhiêu? (làm tròn kết quả đến độ).
Câu hỏi trong đề: Đề kiểm tra Toán 9 Cánh diều Chương 4 có đáp án !!
Quảng cáo
Trả lời:
Chọn D
Ta có: \[\sin \alpha = \frac{{2,5}}{5} = \frac{1}{2}\] nên \[\alpha = 30^\circ \].
Vậy góc hợp bởi thang và thân cây cau là \[\alpha = 30^\circ \].
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C
Gọi \(A,\,\,D\) là vị trí của người đứng;
\(C,\,\,D\) là vị trí bức tường phía trên và dưới cùng;
\[H\] là hình chiếu của \[A\] lên \[BC.\]

Tứ giác \[ADBH\] là hình chữ nhật nên \(BD = AH = 1,5\;\,{\rm{m}}\);
\[BH = AD = 1,2\;\,{\rm{m}}{\rm{.}}\]
Áp dụng định lí Pythagore vào tam giác \(ABD\) vuông tại \(D,\) ta có:
\(A{B^2} = A{D^2} + B{D^2} = 1,{2^2} + 1,{5^2} = 3,69\).
Suy ra \(AB = \sqrt {3,69} = 1,92\;\,({\rm{m}}).\)
Xét \(\Delta ABC\) vuông tại \[A,\] đường cao \[AH,\] ta có:
\(A{B^2} = BH \cdot BC\) hay \(BC = \frac{{A{B^2}}}{{BH}} = \frac{{3,69}}{{1,2}} \approx 3\;\,\,({\rm{m}})\).
Vậy chiều cao của bức tường là \[3{\rm{ m}}.\]
Lời giải
Lời giải
Đặt \(AH = x\,\,(\;{\rm{m}}),\,\,x > 0\).
• Xét \(\Delta ABH\) vuông tại \[H,\] ta có:
\(\tan C = \frac{{AH}}{{CH}}\) hay \(\tan 35^\circ = \frac{x}{{CH}}\) nên \(CH = \frac{x}{{\tan 35^\circ }}\).
• Xét \(\Delta BCH\) vuông tại \[H,\] ta có:
\(\tan B = \frac{{AH}}{{BH}}\) hay \(\tan 45^\circ = \frac{x}{{BH}}\) nên \(BH = \frac{x}{{\tan 45^\circ }}\).
Ta có: \[BH + CH = BC\]
\[\frac{x}{{\tan 35^\circ }} + \frac{x}{{\tan 45^\circ }} = 3,58\]
\[x\left( {\frac{1}{{\tan 35^\circ }} + \frac{1}{{\tan 45^\circ }}} \right) = 3,58\]
\(x = \frac{{3,58}}{{\frac{1}{{\tan 35^\circ }} + \frac{1}{{\tan 45^\circ }}}} \approx 1,44\;\,({\rm{m)}}{\rm{.}}\)
Độ cao của cầu trượt là \(1,44\;\,{\rm{m}}{\rm{.}}\)
Đáp án: 1,44.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


![Lời giải Xét \(\Delta ABH\) vuông tại \(A\), ta có: \(\tan B = \frac{{AH}}{{AB}}\) hay \(\tan 63^\circ = \frac{{AH}}{{235}}\) nên \(AH = 235 \cdot \tan 63^\circ = 461\;\,({\rm{m)}}\). Vậy chiều cao của tòa nhà này là \[461{\rm{ m}}.\] Đáp án: 461. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/67-1761202758.png)