Đề kiểm tra Toán 9 Cánh diều Chương 4 có đáp án - Đề 2
24 người thi tuần này 4.6 70 lượt thi 11 câu hỏi 45 phút
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi giữa kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 1
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 1: Đại số)
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Đề ôn thi vào 10 môn Toán có đáp án (Mới nhất)- Đề số 1
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Lời giải
Lời giải
Chọn C
Vì \[\alpha ,\,\,\beta \] là hai góc phụ nhau nên \[\beta = 90^\circ - \alpha .\]
Theo định lí tỉ số lượng giác của hai góc phụ nhau, ta có:
\[\sin \alpha = \cos \left( {90^\circ - \alpha } \right) = \cos \beta ;\] \[\tan \alpha = \cot \left( {90^\circ - \alpha } \right) = \cot \beta .\]
Câu 2
Lời giải
Chọn D
Ta có: \[\sin \alpha = \frac{{2,5}}{5} = \frac{1}{2}\] nên \[\alpha = 30^\circ \].
Vậy góc hợp bởi thang và thân cây cau là \[\alpha = 30^\circ \].
Câu 3
Lời giải
Chọn D

Xét tam giác \(ABC\) vuông tại \(A\) có:
• \(\tan C = \frac{{AB}}{{AC}}\) nên \(AB = AC \cdot \tan C = 10\tan 30^\circ = \frac{{10\sqrt 3 }}{3}\,\,{\rm{cm}}\);
• \(\cos C = \frac{{AC}}{{BC}}\) nên \(BC = \frac{{AC}}{{\cos C}} = \frac{{10}}{{\frac{{\sqrt 3 }}{2}}} = \frac{{20\sqrt 3 }}{3}\,\,{\rm{cm}}\).
Vậy \(AB = \frac{{10\sqrt 3 }}{3}\,\,{\rm{cm}};\,\,BC = \frac{{20\sqrt 3 }}{3}\,\,{\rm{cm}}\).
Câu 4
Lời giải
Chọn B
Ta có \(BH = \frac{{BC}}{2} = 3,615\;\,({\rm{m)}}{\rm{.}}\)
Xét \(\Delta ACH\) vuông tại \[H,\] ta có:
\(\tan \widehat {HAB} = \frac{{BH}}{{AH}} = \frac{{3,615}}{{11}}\) nên \(\widehat {HAB} \approx 18^\circ \).
Suy ra \[\widehat {BAC} = 2\widehat {HAB} \approx 2 \cdot 18^\circ = 36^\circ .\]
Vậy góc sút của cầu thủ khoảng \(36^\circ \).
Câu 5
Lời giải
Chọn B

Đặt \[BN = x\,\,({\rm{cm)}}\,\,\,\left( {0 < x < 11} \right)\] Khi đó \[NC = 11 - x\,\,({\rm{cm)}}{\rm{.}}\]
Xét tam giác \(ABN\) vuông tại \(N\) có \(AN = BN \cdot \tan B = x \cdot \tan 40^\circ \).
Xét tam giác \(ACN\) vuông tại \(N\) có \(AN = CN \cdot \tan C = \left( {11 - x} \right)\tan 30^\circ \).
Suy ra \[x\tan 40^\circ = \left( {11 - x} \right)\tan 30^\circ \] nên \[x \approx 4,48\,\,{\rm{cm}}\] (thoả mãn).
Khi đó \(AN = BN \cdot \tan B = 4,48 \cdot \tan 40^\circ \approx 3,76\,\,({\rm{cm)}}\).
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


![Để xác định khoảng cách từ một gốc cây \[A\] trên một hòn đảo nh (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/43-1761183381.png)
![Lời giải Xét \(\Delta ABH\) vuông tại \(A\), ta có: \(\tan B = \frac{{AH}}{{AB}}\) hay \(\tan 63^\circ = \frac{{AH}}{{235}}\) nên \(AH = 235 \cdot \tan 63^\circ = 461\;\,({\rm{m)}}\). Vậy chiều cao của tòa nhà này là \[461{\rm{ m}}.\] Đáp án: 461. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/67-1761202758.png)

