Mỗi ngày đi học, bạn Hùng phải đi đò (điểm \(A\)) qua một khúc sông rộng \[217{\rm{ m}}\] đến điểm \[B\] (bờ bên kia), rồi từ \[B\] đi bộ đến trường tại điểm \(D\) với quãng đường \(BD = 170\,\;{\rm{m}}\) (hình vẽ). Thực tế, do nước chảy, nên chiếc đò bị dòng nước đẩy xiên một góc \(50^\circ \) đưa bạn tới điểm \[C\] (bờ bên kia). Từ \[C\] bạn Hùng đi bộ đến trường. Tính quãng đường mà Hùng đã đi từ \(A\) đến \(D\) (kết quả làm tròn đến hàng đơn vị).

Câu hỏi trong đề: Đề kiểm tra Toán 9 Cánh diều Chương 4 có đáp án !!
Quảng cáo
Trả lời:
• Xét \(\Delta ABC\) vuông tại \(B\), ta có:
\(\tan A = \frac{{BC}}{{AB}}\) hay \(\tan 50^\circ = \frac{{BC}}{{217}}\) nên \(BC = 217 \cdot \tan 50^\circ = 258,6\;\,({\rm{m)}}\).
\(AC = \sqrt {A{B^2} + {B^2}} = \sqrt {{{217}^2} + 258,{6^2}} = 337,6\;\,({\rm{m)}}\).
• Xét \(\Delta BDC\) vuông tại \(B\), ta có:
\(DC = \sqrt {B{C^2} + B{D^2}} = \sqrt {{{170}^2} + 258,{6^2}} = 309,5\;\,({\rm{m)}}\).
\(AC + DC = 337,6 + 309,5 = 647\,\;({\rm{m)}}{\rm{.}}\)
Vậy quãng đường mà Hùng đã đi từ \(A\) đến \(D\) là \(647\,\;{\rm{m}}\).
Đáp án: 647.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C
Gọi \(A,\,\,D\) là vị trí của người đứng;
\(C,\,\,D\) là vị trí bức tường phía trên và dưới cùng;
\[H\] là hình chiếu của \[A\] lên \[BC.\]

Tứ giác \[ADBH\] là hình chữ nhật nên \(BD = AH = 1,5\;\,{\rm{m}}\);
\[BH = AD = 1,2\;\,{\rm{m}}{\rm{.}}\]
Áp dụng định lí Pythagore vào tam giác \(ABD\) vuông tại \(D,\) ta có:
\(A{B^2} = A{D^2} + B{D^2} = 1,{2^2} + 1,{5^2} = 3,69\).
Suy ra \(AB = \sqrt {3,69} = 1,92\;\,({\rm{m}}).\)
Xét \(\Delta ABC\) vuông tại \[A,\] đường cao \[AH,\] ta có:
\(A{B^2} = BH \cdot BC\) hay \(BC = \frac{{A{B^2}}}{{BH}} = \frac{{3,69}}{{1,2}} \approx 3\;\,\,({\rm{m}})\).
Vậy chiều cao của bức tường là \[3{\rm{ m}}.\]
Lời giải
Lời giải
Đặt \(AH = x\,\,(\;{\rm{m}}),\,\,x > 0\).
• Xét \(\Delta ABH\) vuông tại \[H,\] ta có:
\(\tan C = \frac{{AH}}{{CH}}\) hay \(\tan 35^\circ = \frac{x}{{CH}}\) nên \(CH = \frac{x}{{\tan 35^\circ }}\).
• Xét \(\Delta BCH\) vuông tại \[H,\] ta có:
\(\tan B = \frac{{AH}}{{BH}}\) hay \(\tan 45^\circ = \frac{x}{{BH}}\) nên \(BH = \frac{x}{{\tan 45^\circ }}\).
Ta có: \[BH + CH = BC\]
\[\frac{x}{{\tan 35^\circ }} + \frac{x}{{\tan 45^\circ }} = 3,58\]
\[x\left( {\frac{1}{{\tan 35^\circ }} + \frac{1}{{\tan 45^\circ }}} \right) = 3,58\]
\(x = \frac{{3,58}}{{\frac{1}{{\tan 35^\circ }} + \frac{1}{{\tan 45^\circ }}}} \approx 1,44\;\,({\rm{m)}}{\rm{.}}\)
Độ cao của cầu trượt là \(1,44\;\,{\rm{m}}{\rm{.}}\)
Đáp án: 1,44.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Lời giải Xét \(\Delta ABH\) vuông tại \(A\), ta có: \(\tan B = \frac{{AH}}{{AB}}\) hay \(\tan 63^\circ = \frac{{AH}}{{235}}\) nên \(AH = 235 \cdot \tan 63^\circ = 461\;\,({\rm{m)}}\). Vậy chiều cao của tòa nhà này là \[461{\rm{ m}}.\] Đáp án: 461. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/67-1761202758.png)
