Câu hỏi:

23/10/2025 143 Lưu

Để đo chiều cao của một bức tường Điệp dùng một quyển sách và ngắm sao cho hai cạnh bia của quyển sách hướng về vị trí cao nhất và vị trí thấp nhất của bức tường (tham khảo hình vẽ). Biết rằng Điệp đứng cách tường \(1,5\;\,{\rm{m}}\) và vị trí mắt khi quan sát cách mặt đất là \(1,2\;\,{\rm{m}}\).
Vậy chiều cao của bức tư (ảnh 1)
Hỏi chiều cao của bức tường là bao nhiêu? (kết quả làm tròn đến hàng đơn vị).

A. \[2{\rm{ m}}.\]        
B. \[8{\rm{ m}}.\]      
C. \[3{\rm{ m}}.\]                         
D. \[8{\rm{ m}}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Gọi \(A,\,\,D\) là vị trí của người đứng;

\(C,\,\,D\) là vị trí bức tường phía trên và dưới cùng;

\[H\] là hình chiếu của \[A\] lên \[BC.\]

Vậy chiều cao của bức tư (ảnh 2)

Tứ giác \[ADBH\] là hình chữ nhật nên \(BD = AH = 1,5\;\,{\rm{m}}\);

\[BH = AD = 1,2\;\,{\rm{m}}{\rm{.}}\]

Áp dụng định lí Pythagore vào tam giác \(ABD\) vuông tại \(D,\) ta có:

\(A{B^2} = A{D^2} + B{D^2} = 1,{2^2} + 1,{5^2} = 3,69\).

Suy ra \(AB = \sqrt {3,69}  = 1,92\;\,({\rm{m}}).\)

Xét \(\Delta ABC\) vuông tại \[A,\] đường cao \[AH,\] ta có:

\(A{B^2} = BH \cdot BC\) hay \(BC = \frac{{A{B^2}}}{{BH}} = \frac{{3,69}}{{1,2}} \approx 3\;\,\,({\rm{m}})\).

Vậy chiều cao của bức tường là \[3{\rm{ m}}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

• Xét \(\Delta ABC\) vuông tại \(B\), ta có:

\(\tan A = \frac{{BC}}{{AB}}\) hay \(\tan 50^\circ  = \frac{{BC}}{{217}}\) nên \(BC = 217 \cdot \tan 50^\circ  = 258,6\;\,({\rm{m)}}\).

\(AC = \sqrt {A{B^2} + {B^2}}  = \sqrt {{{217}^2} + 258,{6^2}}  = 337,6\;\,({\rm{m)}}\).

• Xét \(\Delta BDC\) vuông tại \(B\), ta có:

\(DC = \sqrt {B{C^2} + B{D^2}}  = \sqrt {{{170}^2} + 258,{6^2}}  = 309,5\;\,({\rm{m)}}\).

\(AC + DC = 337,6 + 309,5 = 647\,\;({\rm{m)}}{\rm{.}}\)

Vậy quãng đường mà Hùng đã đi từ \(A\) đến \(D\) là \(647\,\;{\rm{m}}\).

Đáp án: 647.

Câu 4

A. \[\alpha = 60^\circ \].                                
B. \[\alpha = 45^\circ \].                   
C. \[\alpha = 40^\circ \].                               
D. \[\alpha = 30^\circ \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP