Câu hỏi:

27/10/2025 156 Lưu

Cho hình chóp \(S.ABCD\)đáy là hình chữ nhật. Mặt phẳng \(\left( P \right)\) cắt các cạnh \(SA\), \(SB\), \(SC\), \(SD\) lần lượt tại \[M\], \(N\), \(P\), \(Q\) . Gọi \(I\) là giao điểm của \(MQ\)\(NP\). Câu nào sau đây đúng?              

A. \(SI{\rm{//}}BD\). 
B. \(SI{\rm{//}}AC\). 
C. \(SI{\rm{//}}BA\).                    
D. \(SI{\rm{//}}AD\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Chọn D
Ta có \(\left( {SMQ} \right) \ (ảnh 1)

Ta có \(\left( {SMQ} \right) \equiv \left( {SAD} \right)\) và \(\left( {SNP} \right) \equiv \left( {SBC} \right)\).

Do \(MQ \cap NP = \left\{ I \right\}\) nên \(I\) nằm trên giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\).

Do \(AD\) song song \(BC\) nên giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\) là đường thẳng đi qua \(S\) và song song với \(AD\). Do \(I\) nằm trên giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\) nên suy ra \(SI\) song song với \(AD\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{{u_1} + {u_7} = 30}\\{{u_3} + {u_6} = 35}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2{u_1} + 6d = 30}\\{2{u_1} + 7d = 35}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{u_1} = 0}\\{d = 5.}\end{array}} \right.\)

Vậy \({u_7} = {u_1} + 6d = 0 + 6 \cdot 5 = 30\).

Lời giải

a)  Đ  b) S  c)  S  d) Đ 


(Đúng) \(MN\parallel (SBC)\)
(Vì): Đúng.
Do \(M\), \(N\) lần lượt là trung điểm của \(SA\) và \(SD\) nên \(MN\) là đường trung bình của tam giác \(SAD\). Suy ra \(MN\parallel AD \Rightarrow MN\parallel BC \subset (SBC) \Rightarrow MN\parallel (SBC)\).
(Đúng) \((OMN)\parallel (SBC)\)
(Vì): Đúng.
Tương tự, ta có \(O\), \(N\) theo thứ tự là trung điểm của \(BD\), \(SD\) nên \(ON\) là đường trung bình của tam giác \(SBD \Rightarrow ON\parallel SB \subset (SBC) \Rightarrow ON\parallel (SBC)\).
Do \(\left\{ {\begin{array}{*{20}{l}}{MN\parallel (SBC)}\\{ON\parallel (SBC)}\\{MN \cap ON = N}\\{MN,ON \subset (OMN)}\end{array}} \right. \Rightarrow (OMN)\parallel (SBC)\).
(Sai) Gọi \(E\) là trung điểm đoạn \(AB\) và \(F\) là một điểm thuộc đoạn \(ON\). Khi đó \(EF\) cắt với mặt phẳng \((SBC)\)
(Vì): Sai.
Ta có \(OE\) là đường trung bình của tam giác \(ABD\) nên \(OE\parallel AD \Rightarrow OE\parallel MN\). Do đó \(E \in (OMN)\).
Mặt khác \(F \in ON\), \(ON \subset (OMN) \Rightarrow F \in (OMN)\).
Vì \(\left\{ {\begin{array}{*{20}{l}}{EF \subset (OMN)}\\{(OMN)\parallel (SBC)}\end{array}} \right. \Rightarrow EF\parallel (SBC)\).
(Sai) Gọi \(G\) là một điểm trên mặt phẳng \((ABCD)\) cách đều \(AB\) và \(CD\). Khi đó \(GN\) cắt \((SAB)\)
(Vì): Sai.
Vì \(G\) thuộc mặt phẳng \((ABCD)\) và cách đều \(AB\), \(CD\) nên \(G\) thuộc đường trung bình của hình bình hành \(ABCD\) (ứng với hai cạnh \(AB\), \(CD\)).
Gọi \(I\) là trung điểm \(BC\) thì \(I\), \(O\), \(G\) thẳng hàng.
Ta có \(OI\) là đường trung bình của  nên \(OI\parallel AB \Rightarrow OI\parallel (SAB)\).
Tương tự, ta có \(ON\parallel SB \Rightarrow ON\parallel (SAB)\).
Ta có \(\left\{ {\begin{array}{*{20}{l}}{ON\parallel (SAB)}\\{OI\parallel (SAB)}\\{ON \cap OI = O}\\{OI,ON \subset (OIN)}\end{array}} \right.\) suy ra \((OIN)\parallel (SAB)\) mà \(NG \subset (OIN)\) nên \(NG\parallel (SAB)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP