Câu hỏi:

27/10/2025 111 Lưu

Trong thời gian liên tục \[25\] năm, một người lao động luôn gửi đúng \[4.000.000\] đồng vào một ngày cố định của tháng ở ngân hàng \[M\] với lại suất không thay đổi trong suốt thời gian gửi tiền là \[0,6\% \] tháng. Gọi \[A\] đồng là số tiền người đó có được sau \[25\] năm. Hỏi mệnh đề nào dưới đây là đúng? 

A.  \[3.450.000.000 < A < 3.500.000.000\].  
B.  \[3.400.000.000 < A < 3.450.000.000\].              
C.  \[3.350.000.000 < A < 3.400.000.000\].  
D. \[3.500.000.000 < A < 3.550.000.000\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Sau tháng thứ \[1\] người lao động có: \[4\left( {1 + 0,6\% } \right)\] triệu

Sau tháng thứ \[2\] người lao động có:

\[\left( {4\left( {1 + 0,6\% } \right) + 4} \right)\left( {1 + 0,6\% } \right) = 4\left[ {{{\left( {1 + 0,6\% } \right)}^2} + \left( {1 + 0,6\% } \right)} \right]\] triệu

\[...\]

Sau tháng thứ \[300\] người lao động có:

\[4\left[ {{{\left( {1 + 0,6\% } \right)}^{300}} + {{\left( {1 + 0,6\% } \right)}^{299}}... + \left( {1 + 0,6\% } \right)} \right] = 4\left( {1 + 0,6\% } \right)\frac{{{{\left( {1 + 0,6\% } \right)}^{300}} - 1}}{{\left( {1 + 0,6\% } \right) - 1}} \approx 3364,866\]

( \[ \approx 3.364.866.000\] đồng).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{{u_1} + {u_7} = 30}\\{{u_3} + {u_6} = 35}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2{u_1} + 6d = 30}\\{2{u_1} + 7d = 35}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{u_1} = 0}\\{d = 5.}\end{array}} \right.\)

Vậy \({u_7} = {u_1} + 6d = 0 + 6 \cdot 5 = 30\).

Lời giải

a)  Đ  b) S  c)  S  d) Đ 


(Đúng) \(MN\parallel (SBC)\)
(Vì): Đúng.
Do \(M\), \(N\) lần lượt là trung điểm của \(SA\) và \(SD\) nên \(MN\) là đường trung bình của tam giác \(SAD\). Suy ra \(MN\parallel AD \Rightarrow MN\parallel BC \subset (SBC) \Rightarrow MN\parallel (SBC)\).
(Đúng) \((OMN)\parallel (SBC)\)
(Vì): Đúng.
Tương tự, ta có \(O\), \(N\) theo thứ tự là trung điểm của \(BD\), \(SD\) nên \(ON\) là đường trung bình của tam giác \(SBD \Rightarrow ON\parallel SB \subset (SBC) \Rightarrow ON\parallel (SBC)\).
Do \(\left\{ {\begin{array}{*{20}{l}}{MN\parallel (SBC)}\\{ON\parallel (SBC)}\\{MN \cap ON = N}\\{MN,ON \subset (OMN)}\end{array}} \right. \Rightarrow (OMN)\parallel (SBC)\).
(Sai) Gọi \(E\) là trung điểm đoạn \(AB\) và \(F\) là một điểm thuộc đoạn \(ON\). Khi đó \(EF\) cắt với mặt phẳng \((SBC)\)
(Vì): Sai.
Ta có \(OE\) là đường trung bình của tam giác \(ABD\) nên \(OE\parallel AD \Rightarrow OE\parallel MN\). Do đó \(E \in (OMN)\).
Mặt khác \(F \in ON\), \(ON \subset (OMN) \Rightarrow F \in (OMN)\).
Vì \(\left\{ {\begin{array}{*{20}{l}}{EF \subset (OMN)}\\{(OMN)\parallel (SBC)}\end{array}} \right. \Rightarrow EF\parallel (SBC)\).
(Sai) Gọi \(G\) là một điểm trên mặt phẳng \((ABCD)\) cách đều \(AB\) và \(CD\). Khi đó \(GN\) cắt \((SAB)\)
(Vì): Sai.
Vì \(G\) thuộc mặt phẳng \((ABCD)\) và cách đều \(AB\), \(CD\) nên \(G\) thuộc đường trung bình của hình bình hành \(ABCD\) (ứng với hai cạnh \(AB\), \(CD\)).
Gọi \(I\) là trung điểm \(BC\) thì \(I\), \(O\), \(G\) thẳng hàng.
Ta có \(OI\) là đường trung bình của  nên \(OI\parallel AB \Rightarrow OI\parallel (SAB)\).
Tương tự, ta có \(ON\parallel SB \Rightarrow ON\parallel (SAB)\).
Ta có \(\left\{ {\begin{array}{*{20}{l}}{ON\parallel (SAB)}\\{OI\parallel (SAB)}\\{ON \cap OI = O}\\{OI,ON \subset (OIN)}\end{array}} \right.\) suy ra \((OIN)\parallel (SAB)\) mà \(NG \subset (OIN)\) nên \(NG\parallel (SAB)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP